Search results
Results from the WOW.Com Content Network
Biosensors could be used to monitor air, water, and soil pollutants such as pesticides, potentially carcinogenic, mutagenic, and/or toxic substances and endocrine disrupting chemicals. [101] [102] For example, bionanotechnologists developed a viable biosensor, ROSALIND 2.0, that can detect levels of diverse water pollutants. [103] [104]
In rat liver, the total amount of NAD + and NADH is approximately 1 μmole per gram of wet weight, about 10 times the concentration of NADP + and NADPH in the same cells. [17] The actual concentration of NAD + in cell cytosol is harder to measure, with recent estimates in animal cells ranging around 0.3 mM , [ 18 ] [ 19 ] and approximately 1.0 ...
Bio-FETs couple a transistor device with a bio-sensitive layer that can specifically detect bio-molecules such as nucleic acids and proteins. A Bio-FET system consists of a semiconducting field-effect transistor that acts as a transducer separated by an insulator layer (e.g. SiO 2) from the biological recognition element (e.g. receptors or probe molecules) which are selective to the target ...
An example is electrochemical biosensors fabricated for detecting miR-319a, a miRNA associated with phytohormone response that regulates rice seedling growth regulation. Isothermal alkaline phosphatase catalytic signal amplification of the target miRNA strands was integrated with a three-electrode system to detect miR319a to LoD levels of 1.7 ...
Electrochemical aptamer-based (E-AB) biosensors is a device that takes advantage of the electrochemical and biological properties of aptamers to take real time, in vivo measurements. An electrochemical aptamer-based (E-AB) biosensor generates an electrochemical signal in response to specific target binding in vivo [ 3 ] The signal is measured ...
Biosensors based on type of biotransducers. A biotransducer is the recognition-transduction component of a biosensor system. It consists of two intimately coupled parts; a bio-recognition layer and a physicochemical transducer, which acting together converts a biochemical signal to an electronic or optical signal.
Nicotinamide adenine dinucleotide phosphate, abbreviated NADP [1] [2] or, in older notation, TPN (triphosphopyridine nucleotide), is a cofactor used in anabolic reactions, such as the Calvin cycle and lipid and nucleic acid syntheses, which require NADPH as a reducing agent ('hydrogen source').
The biosensors are disposable, resulting in low costs and high commercial availability. [11] Biosensor selection is determined by the desired test results: kinetic analysis, quantitative analysis, or both. [12] Most commercially available biosensor types will be grouped into one of these three categories by the BLI manufacturer. [1]