Search results
Results from the WOW.Com Content Network
Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. [1] Both the sample and reference are maintained at nearly the same temperature throughout the experiment.
The detection of the melting can be done by sensing the transient heat flows during phase transitions using differential scanning calorimetry – DSC thermoporometry, [1] measuring the quantity of mobile liquid using nuclear magnetic resonance – NMR cryoporometry (NMRC) [2] [3] or measuring the amplitude of neutron scattering from the imbibed ...
Characteristic DSC curve for a polyethylene, the OIT is measured. Oxidation induction time or OIT is a standardized test performed in a DSC which measures the level of thermal stabilization of the material tested. The time between melting and the onset of decomposition in isothermal conditions is measured.
Polymers represent another large area in which thermal analysis finds strong applications. Thermoplastic polymers are commonly found in everyday packaging and household items, but for the analysis of the raw materials, effects of the many additive used (including stabilisers and colours) and fine-tuning of the moulding or extrusion processing used can be achieved by using differential scanning ...
In a differential scanning calorimeter (DSC), heat flow into a sample—usually contained in a small aluminium capsule or 'pan'—is measured differentially, i.e., by comparing it to the flow into an empty reference pan. In a heat flux DSC, both pans sit on a small slab of material with a known (calibrated) heat resistance K. The temperature of ...
Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry.In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference. [1]
An associated thermoanalytical method is thermomechanical analysis. A special related technique is thermodilatometry (TD), the measurement of a change of a dimension of the sample with a negligible force acting on the sample while it is subjected to a temperature regime. The associated thermoanalytical method is thermodilatometric analysis (TDA).
The wire is bent into a V-shape, and the silver sheath is etched away to form a fine-pointed tip. The probe acts as both the heater as well as a temperature sensor. The probe is attached to a conventional scanning probe microscope and can be scanned over the sample surface to resolve the thermal behavior of the sample spatially.