Search results
Results from the WOW.Com Content Network
Particle velocity (denoted v or SVL) is the velocity of a particle (real or imagined) in a medium as it transmits a wave. The SI unit of particle velocity is the metre per second (m/s). In many cases this is a longitudinal wave of pressure as with sound , but it can also be a transverse wave as with the vibration of a taut string.
This demonstrates the wave–particle duality, which states that all matter exhibits both wave and particle properties: The particle is measured as a single pulse at a single position, while the modulus squared of the wave describes the probability of detecting the particle at a specific place on the screen giving a statistical interference ...
The main difference between PIV and those techniques is that PIV produces two-dimensional or even three-dimensional vector fields, while the other techniques measure the velocity at a point. During PIV, the particle concentration is such that it is possible to identify individual particles in an image, but not with certainty to track it between ...
In physics, the acoustic wave equation is a second-order partial differential equation that governs the propagation of acoustic waves through a material medium resp. a standing wavefield. The equation describes the evolution of acoustic pressure p or particle velocity u as a function of position x and time t. A simplified (scalar) form of the ...
In a sound wave, the complementary variable to sound pressure is the particle velocity. Together, they determine the sound intensity of the wave. Sound intensity, denoted I and measured in W·m −2 in SI units, is defined by =, where p is the sound pressure, v is the particle velocity.
Solitary wave in a laboratory wave channel. In mathematics and physics, a soliton is a nonlinear, self-reinforcing, localized wave packet that is strongly stable, in that it preserves its shape while propagating freely, at constant velocity, and recovers it even after collisions with other such localized wave packets.
The velocity of the wave also is given in terms of ω and k . The direction of the wave vector is the direction of the wave propagation and the phonon polarization vector gives the direction in which the atoms vibrate. Actually, in general, the wave velocity in a crystal is different for different directions of k.
In the late 17th century, Sir Isaac Newton had advocated that light was corpuscular (particulate), but Christiaan Huygens took an opposing wave description. While Newton had favored a particle approach, he was the first to attempt to reconcile both wave and particle theories of light, and the only one in his time to consider both, thereby anticipating modern wave-particle duality.