Search results
Results from the WOW.Com Content Network
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
Aqueous KOH saponifies esters: KOH + RCOOR' → RCOOK + R'OH. When R is a long chain, the product is called a potassium soap. This reaction is manifested by the "greasy" feel that KOH gives when touched; fats on the skin are rapidly converted to soap and glycerol. Molten KOH is used to displace halides and other leaving groups.
In chemistry, acid value (AV, acid number, neutralization number or acidity) is a number used to quantify the acidity of a given chemical substance.It is the quantity of base (usually potassium hydroxide (KOH)), expressed as milligrams of KOH required to neutralize the acidic constituents in 1 gram of a sample.
Under ideal conditions the reaction produces 50% of both the alcohol and the carboxylic acid (it takes two aldehydes to produce one acid and one alcohol). [5] This can be economically viable if the products can be separated and both have a value; the commercial conversion of furfural into furfuryl alcohol and 2-furoic acid is an example of this ...
Reaction mechanism for the bromination of acetone while in the presence of acetic acid. Basic (in aqueous NaOH): Reaction mechanism for the bromination of acetone while in the presence of aqueous NaOH. In acidic solution, usually only one alpha hydrogen is replaced by a halogen, as each successive halogenation is slower than the first.
For the stoichiometric reactions involving alkali metal or alkaline earth acetylides, work-up for the reaction requires liberation of the alcohol. To achieve this hydrolysis, aqueous acids are often employed. [6] [17]
The reaction usually requires a catalyst, such as concentrated sulfuric acid: R−OH + R'−CO 2 H → R'−CO 2 R + H 2 O. Other types of ester are prepared in a similar manner−for example, tosyl (tosylate) esters are made by reaction of the alcohol with 4-toluenesulfonyl chloride in pyridine.
The reaction typically proceeds by blowing ethylene oxide through the alcohol at 180 °C and under 1-2 bar of pressure, with potassium hydroxide (KOH) serving as a catalyst. [5] The process is highly exothermic ( Δ H = -92 kJ/mol of ethylene oxide reacted) and requires careful control to avoid a potentially disastrous thermal runaway .