Search results
Results from the WOW.Com Content Network
In fluid dynamics, dynamic pressure (denoted by q or Q and sometimes called velocity pressure) is the quantity defined by: [1] = where (in SI units): q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s.
In its simplest electronic form, the instrument consists of an air bottle connected to the external atmosphere through a sensitive air flow meter. As the aircraft changes altitude, the atmospheric pressure outside the aircraft changes and air flows into or out of the air bottle to equalise the pressure inside the bottle and outside the aircraft.
Engineers check an aircraft model before a test run in the Supersonic Wind Tunnel at Lewis Flight Propulsion Laboratory. Schlieren photography is often used to capture images of gas flow and shock waves in supersonic wind tunnels. Here, Mach 4 flow over a pitot probe is observed by schlieren optics in the Penn State Supersonic Wind Tunnel. The ...
There can be many reasons why your browser crashes. However, most of these issues can be fixed with a simple and quick solution. Before trying the solution below, please report this issue by using the Report a Bug section that can be accessed by clicking the Help menu at the top.
In compressible fluid dynamics, impact pressure (dynamic pressure) is the difference between total pressure (also known as pitot pressure or stagnation pressure) and static pressure. [ 1 ] [ 2 ] In aerodynamics notation, this quantity is denoted as q c {\displaystyle q_{c}} or Q c {\displaystyle Q_{c}} .
When the acoustic particle velocity (sound) propagates across the wires, it asymmetrically alters the temperature distribution around the resistors (wires). The resulting resistance difference provides a broad band (20 Hz up to at least 10 kHz) linear signal with a figure-of-eight directivity that is proportional to the acoustic particle velocity .
It works by measuring pressures or pressure differences and using these values to assess the speed and altitude. [1] These pressures can be measured either from the static port (static pressure) or the pitot tube (pitot pressure). The static pressure is used in all measurements, while the pitot pressure is used only to determine airspeed.
This instrument can determine the salinity, temperature and pressure variables, and then calculate the sound velocity of the water using one of the many formulae available. [ 2 ] Secondly, the speed of sound may be directly measured using a small acoustic transducer and a reflecting surface, mounted at a known distance from the acoustic center ...