Search results
Results from the WOW.Com Content Network
R is a programming language for statistical computing and data visualization. It has been adopted in the fields of data mining, bioinformatics and data analysis. [9] The core R language is augmented by a large number of extension packages, containing reusable code, documentation, and sample data. R software is open-source and free software.
There is also an active R community around the tidyverse. For example, there is the TidyTuesday social data project organised by the Data Science Learning Community (DSLC), [16] where varied real-world datasets are released each week for the community to participate, share, practice, and make learning to work with data easier. [17]
Programming with Big Data in R (pbdR) [1] is a series of R packages and an environment for statistical computing with big data by using high-performance statistical computation. [ 2 ] [ 3 ] The pbdR uses the same programming language as R with S3/S4 classes and methods which is used among statisticians and data miners for developing statistical ...
R Markdown vignettes and Jupyter notebooks make the data analysis completely reproducible. R Markdown vignettes have been included as appendices with tutorials on Wikiversity. [8] In 2022, Posit announced an R Markdown-like publishing system called Quarto. In addition to combining results of R, code and results using Python, Julia, Observable ...
mlpack – open-source library for machine learning, exploits C++ language features to provide maximum performance and flexibility while providing a simple and consistent application programming interface (API) Mondrian – data analysis tool using interactive statistical graphics with a link to R
Tukey defined data analysis in 1961 as: "Procedures for analyzing data, techniques for interpreting the results of such procedures, ways of planning the gathering of data to make its analysis easier, more precise or more accurate, and all the machinery and results of (mathematical) statistics which apply to analyzing data."
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Data augmentation in data analysis are techniques used to increase the amount of data by adding slightly modified copies of already existing data or newly created synthetic data from existing data. It acts as a regularizer and helps reduce overfitting when training a machine learning model. [8] (See: Data augmentation)