Search results
Results from the WOW.Com Content Network
Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: N = a 2 − b 2 . {\displaystyle N=a^{2}-b^{2}.} That difference is algebraically factorable as ( a + b ) ( a − b ) {\displaystyle (a+b)(a-b)} ; if neither factor equals one, it is a proper ...
Yves Gallot's proth.exe has been used to find factors of large Fermat numbers. Édouard Lucas, improving Euler's above-mentioned result, proved in 1878 that every factor of the Fermat number , with n at least 2, is of the form + + (see Proth number), where k is a positive integer. By itself, this makes it easy to prove the primality of the ...
As a contrasting example, if n is the product of the primes 13729, 1372933, and 18848997161, where 13729 × 1372933 = 18848997157, Fermat's factorization method will begin with ⌈ √ n ⌉ = 18848997159 which immediately yields b = √ a 2 − n = √ 4 = 2 and hence the factors a − b = 18848997157 and a + b = 18848997161.
A simple example is the Fermat factorization method, which considers the sequence of numbers :=, for := ⌈ ⌉ +. If one of the x i {\displaystyle x_{i}} equals a perfect square b 2 {\displaystyle b^{2}} , then N = a i 2 − b 2 = ( a i + b ) ( a i − b ) {\displaystyle N=a_{i}^{2}-b^{2}=(a_{i}+b)(a_{i}-b)} is a (potentially non-trivial ...
He invented a factorization method—Fermat's factorization method—and popularized the proof by infinite descent, which he used to prove Fermat's right triangle theorem which includes as a corollary Fermat's Last Theorem for the case n = 4.
Dixon's factorization method; E. Euler's factorization method; F. Factor base; Fast Library for Number Theory; Fermat's factorization method; G. General number field ...
Dixon's method is based on finding a congruence of squares modulo the integer N which is intended to factor. Fermat's factorization method finds such a congruence by selecting random or pseudo-random x values and hoping that the integer x 2 mod N is a perfect square (in the integers):
Near the beginning of the 20th century, it was shown that a corollary of Fermat's little theorem could be used to test for primality. [8] This resulted in the Pocklington primality test. [9] However, as this test requires a partial factorization of n − 1 the running time was still quite