Search results
Results from the WOW.Com Content Network
The graph of a probability mass function. All the values of this function must be non-negative and sum up to 1. In probability and statistics, a probability mass function (sometimes called probability function or frequency function [1]) is a function that gives the probability that a discrete random variable is exactly equal to some value. [2]
Less simply, a random permutation is a permutation generated uniformly randomly from the permutations of a given set and a uniform spanning tree of a graph is a spanning tree selected with uniform probabilities from the full set of spanning trees of the graph. The discrete uniform distribution itself is non-parametric.
If X is a discrete random variable taking values x in the non-negative integers {0,1, ...}, then the probability generating function of X is defined as [1] = = = (),where is the probability mass function of .
In probability theory and statistics, the Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli, [1] is the discrete probability distribution of a random variable which takes the value 1 with probability and the value 0 with probability =.
To define probability distributions for the specific case of random variables (so the sample space can be seen as a numeric set), it is common to distinguish between discrete and absolutely continuous random variables. In the discrete case, it is sufficient to specify a probability mass function assigning a probability to each possible outcome ...
Another random variable may be the person's number of children; this is a discrete random variable with non-negative integer values. It allows the computation of probabilities for individual integer values – the probability mass function (PMF) – or for sets of values, including infinite sets.
A categorical distribution is a discrete probability distribution whose sample space is the set of k individually identified items. It is the generalization of the Bernoulli distribution for a categorical random variable. In one formulation of the distribution, the sample space is taken to be a finite sequence of integers.
The probability mass function of a discrete random variable is the density with respect to the counting measure over the sample space (usually the set of integers, or some subset thereof). It is not possible to define a density with reference to an arbitrary measure (e.g. one can not choose the counting measure as a reference for a continuous ...