Search results
Results from the WOW.Com Content Network
In probability theory and statistics, a standardized moment of a probability distribution is a moment (often a higher degree central moment) that is normalized, typically by a power of the standard deviation, rendering the moment scale invariant. The shape of different probability distributions can be compared using standardized moments. [1]
In mathematics, the moments of a function are certain quantitative measures related to the shape of the function's graph.If the function represents mass density, then the zeroth moment is the total mass, the first moment (normalized by total mass) is the center of mass, and the second moment is the moment of inertia.
The standard measure of a distribution's kurtosis, originating with Karl Pearson, [1] is a scaled version of the fourth moment of the distribution. This number is related to the tails of the distribution, not its peak; [ 2 ] hence, the sometimes-seen characterization of kurtosis as " peakedness " is incorrect.
The first few central moments have intuitive interpretations: The "zeroth" central moment μ 0 is 1. The first central moment μ 1 is 0 (not to be confused with the first raw moment or the expected value μ). The second central moment μ 2 is called the variance, and is usually denoted σ 2, where σ represents the standard deviation.
Conversely, if is a normal deviate with parameters and , then this distribution can be re-scaled and shifted via the formula = / to convert it to the standard normal distribution. This variate is also called the standardized form of X {\textstyle X} .
The first is the square of the skewness: β 1 = γ 1 where γ 1 is the skewness, or third standardized moment. The second is the traditional kurtosis, or fourth standardized moment: β 2 = γ 2 + 3. (Modern treatments define kurtosis γ 2 in terms of cumulants instead of moments, so that for a normal distribution we have γ 2 = 0 and β 2 = 3.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
where μ is the mean, σ is the standard deviation, E is the expectation operator, μ 3 is the third central moment, and κ t are the t-th cumulants. It is sometimes referred to as Pearson's moment coefficient of skewness , [ 5 ] or simply the moment coefficient of skewness , [ 4 ] but should not be confused with Pearson's other skewness ...