Search results
Results from the WOW.Com Content Network
Kelvin bridge. The Wheatstone bridge is the fundamental bridge, but there are other modifications that can be made to measure various kinds of resistances when the fundamental Wheatstone bridge is not suitable. Some of the modifications are: Carey Foster bridge, for measuring small resistances; Kelvin bridge, for measuring small four-terminal ...
A Maxwell-Wien bridge. A Maxwell bridge is a modification to a Wheatstone bridge used to measure an unknown inductance (usually of low Q value) in terms of calibrated resistance and inductance or resistance and capacitance. [1] When the calibrated components are a parallel resistor and capacitor, the bridge is known as a Maxwell bridge.
The two remaining arms are the nearly equal resistances P and Q, connected in the inner gaps of the bridge. A standard Wheatstone bridge for comparison. Points A, B, C and D in both circuit diagrams correspond. X and Y correspond to R 1 and R 2, P and Q correspond to R 3 and R X. Note that with the Carey Foster bridge, we are measuring R 1 ...
George Carey Foster FCS FRS (October 1835 – 9 February 1919) was a chemist and physicist, known for application and modification of the Wheatstone bridge for precise electrical measurement. The Carey Foster bridge is named after him. [1]
The best-known bridge circuit, the Wheatstone bridge, was invented by Samuel Hunter Christie and popularized by Charles Wheatstone, and is used for measuring resistance. It is constructed from four resistors, two of known values R 1 and R 3 (see diagram), one whose resistance is to be determined R x , and one which is variable and calibrated R 2 .
Sir Charles Wheatstone (/ ˈ w iː t s t ə n /; [1] 6 February 1802 – 19 October 1875) was an English physicist and inventor best known for his contributions to the development of the Wheatstone bridge, originally invented by Samuel Hunter Christie, which is used to measure an unknown electrical resistance, and as a major figure in the development of telegraphy.
Education tool for post office box exhibited at Tokyo Denki University. The post office box was a Wheatstone bridge–style testing device with pegs and spring arms to close electrical circuits and measure properties of the circuit under test.
The catalytic bead sensor consists of two coils of fine platinum wire each embedded in a bead of alumina, connected electrically in a Wheatstone bridge circuit. One of the pellistors is impregnated with a special catalyst which promotes oxidation whilst the other is treated to inhibit oxidation. Current is passed through the coils so that they ...