enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Condition number - Wikipedia

    en.wikipedia.org/wiki/Condition_number

    The condition number is derived from the theory of propagation of uncertainty, and is formally defined as the value of the asymptotic worst-case relative change in output for a relative change in input. The "function" is the solution of a problem and the "arguments" are the data in the problem. The condition number is frequently applied to ...

  3. Gauss–Seidel method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Seidel_method

    Gauss–Seidel method. In numerical linear algebra, the Gauss–Seidel method, also known as the Liebmann method or the method of successive displacement, is an iterative method used to solve a system of linear equations. It is named after the German mathematicians Carl Friedrich Gauss and Philipp Ludwig von Seidel.

  4. Ornstein–Uhlenbeck process - Wikipedia

    en.wikipedia.org/wiki/Ornstein–Uhlenbeck_process

    In mathematics, the Ornstein–Uhlenbeck process is a stochastic process with applications in financial mathematics and the physical sciences. Its original application in physics was as a model for the velocity of a massive Brownian particle under the influence of friction. It is named after Leonard Ornstein and George Eugene Uhlenbeck .

  5. Successive over-relaxation - Wikipedia

    en.wikipedia.org/wiki/Successive_over-relaxation

    Successive over-relaxation. In numerical linear algebra, the method of successive over-relaxation ( SOR) is a variant of the Gauss–Seidel method for solving a linear system of equations, resulting in faster convergence. A similar method can be used for any slowly converging iterative process .

  6. Transfer-matrix method (optics) - Wikipedia

    en.wikipedia.org/wiki/Transfer-matrix_method...

    The transfer-matrix method is a method used in optics and acoustics to analyze the propagation of electromagnetic or acoustic waves through a stratified medium; a stack of thin films. [1] [2] This is, for example, relevant for the design of anti-reflective coatings and dielectric mirrors . The reflection of light from a single interface between ...

  7. Bethe–Salpeter equation - Wikipedia

    en.wikipedia.org/wiki/Bethe–Salpeter_equation

    Bethe–Salpeter equation. The Bethe–Salpeter equation (BSE, named after Hans Bethe and Edwin Salpeter) [1] is an integral equation, the solution of which describes the structure of a relativistic two-body (particles) bound state in a covariant formalism quantum field theory (QFT). The equation was first published in 1950 at the end of a ...

  8. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  9. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.