Search results
Results from the WOW.Com Content Network
The third chart in each set was supplemented by Gröber in 1961, and this particular one shows the dimensionless heat transferred from the wall as a function of a dimensionless time variable. The vertical axis is a plot of Q/Q o, the ratio of actual heat transfer to the amount of total possible heat transfer before T = T ∞.
Mixtures may have variable thermal conductivities due to composition. Note that for gases in usual conditions, heat transfer by advection (caused by convection or turbulence for instance) is the dominant mechanism compared to conduction. This table shows thermal conductivity in SI units of watts per metre-kelvin (W·m −1 ·K −1).
The thermal conductivity of a material is a measure of its ability to conduct heat.It is commonly denoted by , , or and is measured in W·m −1 ·K −1.. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity.
Thermal conduction is the diffusion of thermal energy (heat) within one material or between materials in contact. The higher temperature object has molecules with more kinetic energy; collisions between molecules distributes this kinetic energy until an object has the same kinetic energy throughout.
It quantifies how effectively a material can resist the transfer of heat through conduction, convection, and radiation. It has the units square metre kelvins per watt (m 2 ⋅K/W) in SI units or square foot degree Fahrenheit–hours per British thermal unit (ft 2 ⋅°F⋅h/Btu) in imperial units. The higher the thermal insulance, the better a ...
Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer P = / W ML 2 T −3: Thermal intensity I = / W⋅m −2: MT −3: Thermal/heat flux density (vector analogue of thermal intensity above) q
The Biot number (Bi) is a dimensionless quantity used in heat transfer calculations, named for the eighteenth-century French physicist Jean-Baptiste Biot (1774–1862). The Biot number is the ratio of the thermal resistance for conduction inside a body to the resistance for convection at the surface of the body.
In thermal fluid dynamics, the Nusselt number (Nu, after Wilhelm Nusselt [1]: 336 ) is the ratio of total heat transfer to conductive heat transfer at a boundary in a fluid. Total heat transfer combines conduction and convection. Convection includes both advection (fluid motion) and diffusion (conduction). The conductive component is measured ...