Search results
Results from the WOW.Com Content Network
The mean and the standard deviation of a set of data are descriptive statistics usually reported together. In a certain sense, the standard deviation is a "natural" measure of statistical dispersion if the center of the data is measured about the mean. This is because the standard deviation from the mean is smaller than from any other point.
Bloom's 2 sigma problem refers to the educational phenomenon that the average student tutored one-to-one using mastery learning techniques performed two standard deviations better than students educated in a classroom environment.
Bias in standard deviation for autocorrelated data. The figure shows the ratio of the estimated standard deviation to its known value (which can be calculated analytically for this digital filter), for several settings of α as a function of sample size n. Changing α alters the variance reduction ratio of the filter, which is known to be
The one-sided variant can be used to prove the proposition that for probability distributions having an expected value and a median, the mean and the median can never differ from each other by more than one standard deviation. To express this in symbols let μ, ν, and σ be respectively the mean, the median, and the standard deviation. Then
The unbiased estimation of standard deviation is a technically involved problem, though for the normal distribution using the term n − 1.5 yields an almost unbiased estimator. The unbiased sample variance is a U-statistic for the function ƒ ( y 1 , y 2 ) = ( y 1 − y 2 ) 2 /2, meaning that it is obtained by averaging a 2-sample statistic ...
Variance (the square of the standard deviation) – location-invariant but not linear in scale. Variance-to-mean ratio – mostly used for count data when the term coefficient of dispersion is used and when this ratio is dimensionless, as count data are themselves dimensionless, not otherwise. Some measures of dispersion have specialized purposes.
If is a standard normal deviate, then = + will have a normal distribution with expected value and standard deviation . This is equivalent to saying that the standard normal distribution Z {\textstyle Z} can be scaled/stretched by a factor of σ {\textstyle \sigma } and shifted by μ {\textstyle \mu } to yield a different normal distribution ...
In most such problems, if the standard deviation of the errors were known, a normal distribution would be used instead of the t distribution. Confidence intervals and hypothesis tests are two statistical procedures in which the quantiles of the sampling distribution of a particular statistic (e.g. the standard score) are required.