Search results
Results from the WOW.Com Content Network
Figure 1. Probabilistic parameters of a hidden Markov model (example) X — states y — possible observations a — state transition probabilities b — output probabilities. In its discrete form, a hidden Markov process can be visualized as a generalization of the urn problem with replacement (where each item from the urn is returned to the original urn before the next step). [7]
Local and global search with profile Hidden Markov models, more sensitive than PSI-BLAST: Both: Durbin R, Eddy SR, Krogh A, Mitchison G [6] 1998 HH-suite: Pairwise comparison of profile Hidden Markov models; very sensitive: Protein: Söding J [7] [8] 2005/2012 IDF Inverse Document Frequency: Both: Infernal Profile SCFG search: RNA: Eddy S: KLAST
The hierarchical hidden Markov model (HHMM) is a statistical model derived from the hidden Markov model (HMM). In an HHMM, each state is considered to be a self-contained probabilistic model. More precisely, each state of the HHMM is itself an HHMM. HHMMs and HMMs are useful in many fields, including pattern recognition. [1] [2]
A profile HMM modelling a multiple sequence alignment. HMMER is a free and commonly used software package for sequence analysis written by Sean Eddy. [2] Its general usage is to identify homologous protein or nucleotide sequences, and to perform sequence alignments.
A hidden Markov model is a Markov chain for which the state is only partially observable or noisily observable. In other words, observations are related to the state of the system, but they are typically insufficient to precisely determine the state. Several well-known algorithms for hidden Markov models exist.
In electrical engineering, statistical computing and bioinformatics, the Baum–Welch algorithm is a special case of the expectation–maximization algorithm used to find the unknown parameters of a hidden Markov model (HMM). It makes use of the forward-backward algorithm to compute the statistics for the expectation step. The Baum–Welch ...
The goal of the segmentation problem is to infer the hidden state at each time, as well as the parameters describing the emission distribution associated with each hidden state. Hidden state sequence and emission distribution parameters can be learned using the Baum-Welch algorithm, which is a variant of expectation maximization applied to HMMs ...
The forward algorithm, in the context of a hidden Markov model (HMM), is used to calculate a 'belief state': the probability of a state at a certain time, given the history of evidence. The process is also known as filtering.