Search results
Results from the WOW.Com Content Network
Orbital position vector, orbital velocity vector, other orbital elements. In astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position and velocity that together with their time () uniquely determine the trajectory of the orbiting body in space.
Orbital elements are the parameters required to uniquely identify a specific orbit. In celestial mechanics these elements are considered in two-body systems using a Kepler orbit . There are many different ways to mathematically describe the same orbit, but certain schemes, each consisting of a set of six parameters, are commonly used in ...
The basic orbit determination task is to determine the classical orbital elements or Keplerian elements, ,,,,, from the orbital state vectors [,], of an orbiting body with respect to the reference frame of its central body. The central bodies are the sources of the gravitational forces, like the Sun, Earth, Moon and other planets.
In chemistry and atomic physics, an electron shell may be thought of as an orbit that electrons follow around an atom's nucleus.The closest shell to the nucleus is called the "1 shell" (also called the "K shell"), followed by the "2 shell" (or "L shell"), then the "3 shell" (or "M shell"), and so on further and further from the nucleus.
The proper elements can be contrasted with the osculating Keplerian orbital elements observed at a particular time or epoch, such as the semi-major axis, eccentricity, and inclination. Those osculating elements change in a quasi-periodic and (in principle) predictable manner due to such effects as perturbations from planets or other bodies, and ...
A two-line element set (TLE, or more rarely 2LE) or three-line element set (3LE) is a data format encoding a list of orbital elements of an Earth-orbiting object for a given point in time, the epoch. Using a suitable prediction formula, the state (position and velocity) at any point in the past or future can be estimated to some accuracy.
It shows the ground state configuration in terms of orbital occupancy, but it does not show the ground state in terms of the sequence of orbital energies as determined spectroscopically. For example, in the transition metals, the 4s orbital is of a higher energy than the 3d orbitals; and in the lanthanides, the 6s is higher than the 4f and 5d.
† Elements with 7p electrons have been discovered, but their electronic configurations are only predicted – save the exceptional Lr, which fills 7p 1 instead of 6d 1. ‡ For the elements whose highest occupied orbital is a 6d orbital, only some electronic configurations have been confirmed. (Mt, Ds, Rg and Cn are still missing).