Search results
Results from the WOW.Com Content Network
Radon transform. Maps f on the (x, y)-domain to Rf on the (α, s)-domain.. In mathematics, the Radon transform is the integral transform which takes a function f defined on the plane to a function Rf defined on the (two-dimensional) space of lines in the plane, whose value at a particular line is equal to the line integral of the function over that line.
In theory, the inverse Radon transformation would yield the original image. The projection-slice theorem tells us that if we had an infinite number of one-dimensional projections of an object taken at an infinite number of angles, we could perfectly reconstruct the original object, f ( x , y ) {\displaystyle f(x,y)} .
The fifth is a high-resolution Linear Radon transformation performed by Luo et al. (2008). [10] In performing a wave-field transformation, a slant stack is done, followed by a Fourier transform . The way in which a Fourier transform changes x-t data into x-ω (ω is angular frequency) data shows why phase velocity dominates surface wave ...
Abel transform can be viewed as the Radon transform of an isotropic 2D function f(r). As f(r) is isotropic, its Radon transform is the same at different angles of the viewing axis. Thus, the Abel transform is a function of the distance along the viewing axis only.
Take a two-dimensional function f(r), project (e.g. using the Radon transform) it onto a (one-dimensional) line, and do a Fourier transform of that projection. Take that same function, but do a two-dimensional Fourier transform first, and then slice it through its origin, which is parallel to the projection line. In operator terms, if
"Duality and Radon transforms for symmetric spaces". Bulletin of the American Mathematical Society. 69 (6): 782– 7881. doi: 10.1090/S0002-9904-1963-11030-7. hdl: 1721.1/26684. MR 0158408. Helgason, Sigurdur (1964). "A duality in integral geometry; some generalizations of the Radon transform". Bulletin of the American Mathematical Society. 70 ...
The Mojette transform is an application of discrete geometry. More specifically, it is a discrete and exact version of the Radon transform, thus a projection operator. The IRCCyN laboratory - UMR CNRS 6597 in Nantes, France has been developing it since 1994. The first characteristic of the Mojette transform is using only additions and subtractions.
Inverse two-sided Laplace transform; Laplace–Carson transform; Laplace–Stieltjes transform; Legendre transform; Linear canonical transform; Mellin transform. Inverse Mellin transform; Poisson–Mellin–Newton cycle; N-transform; Radon transform; Stieltjes transformation; Sumudu transform; Wavelet transform (integral) Weierstrass transform ...