enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radon transform - Wikipedia

    en.wikipedia.org/wiki/Radon_transform

    Radon transform. Maps f on the (x, y)-domain to Rf on the (α, s)-domain.. In mathematics, the Radon transform is the integral transform which takes a function f defined on the plane to a function Rf defined on the (two-dimensional) space of lines in the plane, whose value at a particular line is equal to the line integral of the function over that line.

  3. Tomographic reconstruction - Wikipedia

    en.wikipedia.org/wiki/Tomographic_reconstruction

    In theory, the inverse Radon transformation would yield the original image. The projection-slice theorem tells us that if we had an infinite number of one-dimensional projections of an object taken at an infinite number of angles, we could perfectly reconstruct the original object, f ( x , y ) {\displaystyle f(x,y)} .

  4. Surface wave inversion - Wikipedia

    en.wikipedia.org/wiki/Surface_wave_inversion

    The fifth is a high-resolution Linear Radon transformation performed by Luo et al. (2008). [10] In performing a wave-field transformation, a slant stack is done, followed by a Fourier transform . The way in which a Fourier transform changes x-t data into x-ω (ω is angular frequency) data shows why phase velocity dominates surface wave ...

  5. Abel transform - Wikipedia

    en.wikipedia.org/wiki/Abel_transform

    Abel transform can be viewed as the Radon transform of an isotropic 2D function f(r). As f(r) is isotropic, its Radon transform is the same at different angles of the viewing axis. Thus, the Abel transform is a function of the distance along the viewing axis only.

  6. Projection-slice theorem - Wikipedia

    en.wikipedia.org/wiki/Projection-slice_theorem

    Take a two-dimensional function f(r), project (e.g. using the Radon transform) it onto a (one-dimensional) line, and do a Fourier transform of that projection. Take that same function, but do a two-dimensional Fourier transform first, and then slice it through its origin, which is parallel to the projection line. In operator terms, if

  7. Sigurður Helgason (mathematician) - Wikipedia

    en.wikipedia.org/wiki/Sigurður_Helgason...

    "Duality and Radon transforms for symmetric spaces". Bulletin of the American Mathematical Society. 69 (6): 782– 7881. doi: 10.1090/S0002-9904-1963-11030-7. hdl: 1721.1/26684. MR 0158408. Helgason, Sigurdur (1964). "A duality in integral geometry; some generalizations of the Radon transform". Bulletin of the American Mathematical Society. 70 ...

  8. Mojette transform - Wikipedia

    en.wikipedia.org/wiki/Mojette_Transform

    The Mojette transform is an application of discrete geometry. More specifically, it is a discrete and exact version of the Radon transform, thus a projection operator. The IRCCyN laboratory - UMR CNRS 6597 in Nantes, France has been developing it since 1994. The first characteristic of the Mojette transform is using only additions and subtractions.

  9. List of transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_transforms

    Inverse two-sided Laplace transform; Laplace–Carson transform; Laplace–Stieltjes transform; Legendre transform; Linear canonical transform; Mellin transform. Inverse Mellin transform; Poisson–Mellin–Newton cycle; N-transform; Radon transform; Stieltjes transformation; Sumudu transform; Wavelet transform (integral) Weierstrass transform ...