Search results
Results from the WOW.Com Content Network
Radon transform. Maps f on the (x, y)-domain to Rf on the (α, s)-domain.. In mathematics, the Radon transform is the integral transform which takes a function f defined on the plane to a function Rf defined on the (two-dimensional) space of lines in the plane, whose value at a particular line is equal to the line integral of the function over that line.
In theory, the inverse Radon transformation would yield the original image. The projection-slice theorem tells us that if we had an infinite number of one-dimensional projections of an object taken at an infinite number of angles, we could perfectly reconstruct the original object, f ( x , y ) {\displaystyle f(x,y)} .
Take a two-dimensional function f(r), project (e.g. using the Radon transform) it onto a (one-dimensional) line, and do a Fourier transform of that projection. Take that same function, but do a two-dimensional Fourier transform first, and then slice it through its origin, which is parallel to the projection line. In operator terms, if
Abel transform can be viewed as the Radon transform of an isotropic 2D function f(r). As f(r) is isotropic, its Radon transform is the same at different angles of the viewing axis. Thus, the Abel transform is a function of the distance along the viewing axis only.
Inverse two-sided Laplace transform; Laplace–Carson transform; Laplace–Stieltjes transform; Legendre transform; Linear canonical transform; Mellin transform. Inverse Mellin transform; Poisson–Mellin–Newton cycle; N-transform; Radon transform; Stieltjes transformation; Sumudu transform; Wavelet transform (integral) Weierstrass transform ...
In many situations the basic strategy is to apply the Fourier transform, perform some operation or simplification, and then apply the inverse Fourier transform. More abstractly, the Fourier inversion theorem is a statement about the Fourier transform as an operator (see Fourier transform on function spaces).
Language links are at the top of the page across from the title.
In higher dimensions, the X-ray transform of a function is defined by integrating over lines rather than over hyperplanes as in the Radon transform. The X-ray transform derives its name from X-ray tomography (used in CT scans ) because the X-ray transform of a function ƒ represents the attenuation data of a tomographic scan through an ...