Search results
Results from the WOW.Com Content Network
The t-test p-value for the difference in means, and the regression p-value for the slope, are both 0.00805. The methods give identical results. This example shows that, for the special case of a simple linear regression where there is a single x-variable that has values 0 and 1, the t-test gives the same results as the linear regression. The ...
To design a test, Šidák correction may be applied, as in the case of finitely many t-test. However, when N ( n ) → ∞ as n → ∞ {\displaystyle N(n)\rightarrow \infty {\text{ as }}n\rightarrow \infty } , the Šidák correction for t-test may not achieve the level we want, that is, the true level of the test may not converges to the ...
The Šidák correction is derived by assuming that the individual tests are independent.Let the significance threshold for each test be ; then the probability that at least one of the tests is significant under this threshold is (1 - the probability that none of them are significant).
But such an approach is conservative if dependence is actually positive. To give an extreme example, under perfect positive dependence, there is effectively only one test and thus, the FWER is uninflated. Accounting for the dependence structure of the p-values (or of the individual test statistics) produces more powerful procedures. This can be ...
Most frequently, t statistics are used in Student's t-tests, a form of statistical hypothesis testing, and in the computation of certain confidence intervals. The key property of the t statistic is that it is a pivotal quantity – while defined in terms of the sample mean, its sampling distribution does not depend on the population parameters, and thus it can be used regardless of what these ...
The noncentral t-distribution generalizes Student's t-distribution using a noncentrality parameter.Whereas the central probability distribution describes how a test statistic t is distributed when the difference tested is null, the noncentral distribution describes how t is distributed when the null is false.
The Student's t distribution plays a role in a number of widely used statistical analyses, including Student's t test for assessing the statistical significance of the difference between two sample means, the construction of confidence intervals for the difference between two population means, and in linear regression analysis.
It is usually determined on the basis of the cost, time or convenience of data collection and the need for sufficient statistical power. For example, if a proportion is being estimated, one may wish to have the 95% confidence interval be less than 0.06 units wide. Alternatively, sample size may be assessed based on the power of a hypothesis ...