Search results
Results from the WOW.Com Content Network
In mathematics, inverse mapping theorem may refer to: the inverse function theorem on the existence of local inverses for functions with non-singular derivatives; the bounded inverse theorem on the boundedness of the inverse for invertible bounded linear operators on Banach spaces
P ' is the inverse of P with respect to the circle. To invert a number in arithmetic usually means to take its reciprocal. A closely related idea in geometry is that of "inverting" a point. In the plane, the inverse of a point P with respect to a reference circle (Ø) with center O and radius r is a point P ', lying on the ray from O through P ...
Mathematical psychology is an approach to psychological research that is based on mathematical modeling of perceptual, thought, cognitive and motor processes, and on the establishment of law-like rules that relate quantifiable stimulus characteristics with quantifiable behavior (in practice often constituted by task performance).
In mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective , and if it exists, is denoted by f − 1 . {\displaystyle f^{-1}.}
A birational map from X to Y is a rational map f : X ⇢ Y such that there is a rational map Y ⇢ X inverse to f.A birational map induces an isomorphism from a nonempty open subset of X to a nonempty open subset of Y, and vice versa: an isomorphism between nonempty open subsets of X, Y by definition gives a birational map f : X ⇢ Y.
Similarly, the inverse image (or preimage) of a given subset of the codomain is the set of all elements of that map to a member of . The image of the function f {\displaystyle f} is the set of all output values it may produce, that is, the image of X {\displaystyle X} .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Another example is the application of conformal mapping technique for solving the boundary value problem of liquid sloshing in tanks. [ 19 ] If a function is harmonic (that is, it satisfies Laplace's equation ∇ 2 f = 0 {\displaystyle \nabla ^{2}f=0} ) over a plane domain (which is two-dimensional), and is transformed via a conformal map to ...