Search results
Results from the WOW.Com Content Network
In genetics, the coefficient of coincidence (c.o.c.) is a measure of interference in the formation of chromosomal crossovers during meiosis. It is generally the case that, if there is a crossover at one spot on a chromosome, this decreases the likelihood of a crossover in a nearby spot. [1] This is called interference.
Crossover interference is the term used to refer to the non-random placement of crossovers with respect to each other during meiosis.The term is attributed to Hermann Joseph Muller, who observed that one crossover "interferes with the coincident occurrence of another crossing over in the same pair of chromosomes, and I have accordingly termed this phenomenon ‘interference’."
In population genetics, the Hill–Robertson effect, or Hill–Robertson interference, is a phenomenon first identified by Bill Hill and Alan Robertson in 1966. [1] It provides an explanation as to why there may be an evolutionary advantage to genetic recombination .
There are two distinctive mapping approaches used in the field of genome mapping: genetic maps (also known as linkage maps) [7] and physical maps. [3] While both maps are a collection of genetic markers and gene loci, [8] genetic maps' distances are based on the genetic linkage information, while physical maps use actual physical distances usually measured in number of base pairs.
In genetics, a chiasma (pl.: chiasmata) is the point of contact, the physical link, between two (non-sister) chromatids belonging to homologous chromosomes. At a given chiasma, an exchange of genetic material can occur between both chromatids, what is called a chromosomal crossover, but this is much more frequent during meiosis than mitosis. [1]
Genetic variability is either the presence of, or the generation of, genetic differences. It is defined as "the formation of individuals differing in genotype, or the presence of genotypically different individuals, in contrast to environmentally induced differences which, as a rule, cause only temporary, nonheritable changes of the phenotype."
Left:Overview of RNA interference. RNA interference is a natural process used by cells to regulate gene expression. It was discovered in 1998 by Andrew Fire and Craig Mello, who won the Nobel Prize for their discovery in 2006. [12]
The RNase III Dicer is a critical member of RISC that initiates the RNA interference process by producing double-stranded siRNA or single-stranded miRNA. Enzymatic cleavage of dsRNA within the cell produces the short siRNA fragments of 21-23 nucleotides in length with a two-nucleotide 3' overhang.