Search results
Results from the WOW.Com Content Network
As this example shows, when like terms exist in an expression, they may be combined by adding or subtracting (whatever the expression indicates) the coefficients, and maintaining the common factor of both terms. Such combination is called combining like terms or collecting like terms, and it is an important tool used for solving equations.
The coefficient is −5, the indeterminates are x and y, the degree of x is two, while the degree of y is one. The degree of the entire term is the sum of the degrees of each indeterminate in it, so in this example the degree is 2 + 1 = 3. Forming a sum of several terms produces a polynomial.
If the constant term is 0, then it will conventionally be omitted when the quadratic is written out. Any polynomial written in standard form has a unique constant term, which can be considered a coefficient of . In particular, the constant term will always be the lowest degree term of the polynomial. This also applies to multivariate polynomials.
the exponents of y in the terms are 0, 1, 2, ..., n − 1, n (the first term implicitly contains y 0 = 1); the coefficients form the n th row of Pascal's triangle; before combining like terms, there are 2 n terms x i y j in the expansion (not shown); after combining like terms, there are n + 1 terms, and their coefficients sum to 2 n.
For polynomials in two or more variables, the degree of a term is the sum of the exponents of the variables in the term; the degree (sometimes called the total degree) of the polynomial is again the maximum of the degrees of all terms in the polynomial. For example, the polynomial x 2 y 2 + 3x 3 + 4y has degree 4, the same degree as the term x ...
For example, if y is considered a parameter in the above expression, then the coefficient of x would be −3y, and the constant coefficient (with respect to x) would be 1.5 + y. When one writes a x 2 + b x + c , {\displaystyle ax^{2}+bx+c,} it is generally assumed that x is the only variable, and that a , b and c are parameters; thus the ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...