enow.com Web Search

  1. Ads

    related to: how to describe single transformations in algebra 1 examples problems

Search results

  1. Results from the WOW.Com Content Network
  2. One-parameter group - Wikipedia

    en.wikipedia.org/wiki/One-parameter_group

    According to Lie, an infinitesimal transformation is an infinitely small transformation of the one-parameter group that it generates. [1] It is these infinitesimal transformations that generate a Lie algebra that is used to describe a Lie group of any dimension. The action of a one-parameter group on a set is known as a flow.

  3. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    Top: The action of M, indicated by its effect on the unit disc D and the two canonical unit vectors e 1 and e 2. Left: The action of V ⁎, a rotation, on D, e 1, and e 2. Bottom: The action of Σ, a scaling by the singular values σ 1 horizontally and σ 2 vertically. Right: The action of U, another rotation.

  4. Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_problems

    4. Problem of the straight line as the shortest distance between two points. 5. Lie's concept of a continuous group of transformations without the assumption of the differentiability of the functions defining the group. 6. Mathematical treatment of the axioms of physics. 7. Irrationality and transcendence of certain numbers. 8.

  5. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    In linear algebra, linear transformations can be represented by matrices.If is a linear transformation mapping to and is a column vector with entries, then there exists an matrix , called the transformation matrix of , [1] such that: = Note that has rows and columns, whereas the transformation is from to .

  6. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    If we condense the skew entries into a vector, (x,y,z), then we produce a 90° rotation around the x-axis for (1, 0, 0), around the y-axis for (0, 1, 0), and around the z-axis for (0, 0, 1). The 180° rotations are just out of reach; for, in the limit as x → ∞ , ( x , 0, 0) does approach a 180° rotation around the x axis, and similarly for ...

  7. Monodromy - Wikipedia

    en.wikipedia.org/wiki/Monodromy

    The inverse problem, of constructing the equation (with regular singularities), given a representation, is a Riemann–Hilbert problem. For a regular (and in particular Fuchsian) linear system one usually chooses as generators of the monodromy group the operators M j corresponding to loops each of which circumvents just one of the poles of the ...

  8. Transformation (function) - Wikipedia

    en.wikipedia.org/wiki/Transformation_(function)

    In mathematics, a transformation, transform, or self-map [1] is a function f, usually with some geometrical underpinning, that maps a set X to itself, i.e. f: X → X. [ 2 ] [ 3 ] [ 4 ] Examples include linear transformations of vector spaces and geometric transformations , which include projective transformations , affine transformations , and ...

  9. Matrix similarity - Wikipedia

    en.wikipedia.org/wiki/Matrix_similarity

    A transformation A ↦ P −1 AP is called a similarity transformation or conjugation of the matrix A. In the general linear group , similarity is therefore the same as conjugacy , and similar matrices are also called conjugate ; however, in a given subgroup H of the general linear group, the notion of conjugacy may be more restrictive than ...

  1. Ads

    related to: how to describe single transformations in algebra 1 examples problems