Search results
Results from the WOW.Com Content Network
A convex quadrilateral is ex-tangential if and only if there are six concurrent angles bisectors: the internal angle bisectors at two opposite vertex angles, the external angle bisectors at the other two vertex angles, and the external angle bisectors at the angles formed where the extensions of opposite sides intersect.
An angle bisector divides the angle into two angles with equal measures. An angle only has one bisector. Each point of an angle bisector is equidistant from the sides of the angle. The 'interior' or 'internal bisector' of an angle is the line, half-line, or line segment that
The angle bisector theorem is commonly used when the angle bisectors and side lengths are known. It can be used in a calculation or in a proof. An immediate consequence of the theorem is that the angle bisector of the vertex angle of an isosceles triangle will also bisect the opposite side.
An angle bisector of a triangle is a straight line through a vertex that cuts the corresponding angle in half. The three angle bisectors intersect in a single point, the incenter, which is the center of the triangle's incircle. The incircle is the circle that lies inside the triangle and touches all three sides. Its radius is called the inradius.
In a triangle, three intersection points, each of an external angle bisector with the opposite extended side, are collinear. [23]: 149 In a triangle, three intersection points, two between an interior angle bisector and the opposite side, and the third between the other exterior angle bisector and the opposite side extended are collinear.
The center of the incircle, called the incenter, can be found as the intersection of the three internal angle bisectors. [3] [4] The center of an excircle is the intersection of the internal bisector of one angle (at vertex A, for example) and the external bisectors of the other two.
A kite with three 108° angles and one 36° angle forms the convex hull of the lute of Pythagoras, a fractal made of nested pentagrams. [22] The four sides of this kite lie on four of the sides of a regular pentagon , with a golden triangle glued onto the fifth side.
For example, there exist simple algebraic expressions for angle bisectors in terms of the sides of the triangle. Equating two of these expressions and algebraically manipulating the equation results in a product of two factors which equal 0, but only one of them ( a − b ) can equal 0 and the other must be positive.