enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  3. Poynting's theorem - Wikipedia

    en.wikipedia.org/wiki/Poynting's_theorem

    where: is the rate of change of the energy density in the volume. ∇•S is the energy flow out of the volume, given by the divergence of the Poynting vector S. J•E is the rate at which the fields do work on charges in the volume (J is the current density corresponding to the motion of charge, E is the electric field, and • is the dot product).

  4. Yang–Mills equations - Wikipedia

    en.wikipedia.org/wiki/Yang–Mills_equations

    In physics and mathematics, and especially differential geometry and gauge theory, the Yang–Mills equations are a system of partial differential equations for a connection on a vector bundle or principal bundle. They arise in physics as the Euler–Lagrange equations of the Yang–Mills action functional. They have also found significant use ...

  5. List of equations in nuclear and particle physics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension Number of atoms N = Number of atoms remaining at time t. N 0 = Initial number of atoms at time t = 0

  6. Mathematical formulation of the Standard Model - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    Standard Model of Particle Physics. The diagram shows the elementary particles of the Standard Model (the Higgs boson, the three generations of quarks and leptons, and the gauge bosons), including their names, masses, spins, charges, chiralities, and interactions with the strong, weak and electromagnetic forces.

  7. Wiedemann–Franz law - Wikipedia

    en.wikipedia.org/wiki/Wiedemann–Franz_law

    Experiments have shown that the value of L, while roughly constant, is not exactly the same for all materials. Kittel [ 8 ] gives some values of L ranging from L = 2.23×10 −8 V 2 K −2 for copper at 0 °C to L = 3.2×10 −8 V 2 K −2 for tungsten at 100 °C.

  8. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  9. Derivations of the Lorentz transformations - Wikipedia

    en.wikipedia.org/wiki/Derivations_of_the_Lorentz...

    In the fundamental branches of modern physics, namely general relativity and its widely applicable subset special relativity, as well as relativistic quantum mechanics and relativistic quantum field theory, the Lorentz transformation is the transformation rule under which all four-vectors and tensors containing physical quantities transform from one frame of reference to another.