Search results
Results from the WOW.Com Content Network
Vertically upwards seepage is a source of danger on the downstream side of sheet piling and beneath the toe of a dam or levee. Erosion of the soil, known as "soil piping", can lead to failure of the structure and to sinkhole formation. Seeping water removes soil, starting from the exit point of the seepage, and erosion advances upgradient. [17]
Underdamped spring–mass system with ζ < 1. In physical systems, damping is the loss of energy of an oscillating system by dissipation. [1] [2] Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. [3]
Viscous damping also refers to damping devices. Most often they damp motion by providing a force or torque opposing motion proportional to the velocity. This may be affected by fluid flow or motion of magnetic structures. The intended effect is to improve the damping ratio. Shock absorbers in cars; Seismic retrofitting with viscous dampers [2]
Under the conditions of a pore pressure gradient, the ground water flows, according to the permeability equation (Darcy's law). Using our spheres as a model, this is the same as injecting (or withdrawing) water between the spheres. If water is being injected, the seepage force acts to separate the spheres and reduces the effective stress.
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.
Darcy's law is an equation that describes the flow of a fluid through a porous medium and through a Hele-Shaw cell.The law was formulated by Henry Darcy based on results of experiments [1] on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences.
According to the Mohr-Coulomb equation, the cohesion of a soil is defined as the shear strength at zero normal pressure on the surface of failure. [4] The shear force is a function of cohesion, normal stress on rupture surface, and angle of internal friction. Shear force is significantly impacted by drainage conditions. [5]
The Richards equation represents the movement of water in unsaturated soils, and is attributed to Lorenzo A. Richards who published the equation in 1931. [1] It is a quasilinear partial differential equation ; its analytical solution is often limited to specific initial and boundary conditions. [ 2 ]