enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    Curves on a surface which minimize length between the endpoints are called geodesics; they are the shape that an elastic band stretched between the two points would take. Mathematically they are described using ordinary differential equations and the calculus of variations. The differential geometry of surfaces revolves around the study of ...

  3. Differential geometry - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry

    Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, ... For a surface in R 3, ...

  4. Riemannian connection on a surface - Wikipedia

    en.wikipedia.org/wiki/Riemannian_connection_on_a...

    The classical nineteenth century approach to the differential geometry of surfaces, due in large part to Carl Friedrich Gauss, has been reworked in this modern framework, which provides the natural setting for the classical theory of the moving frame as well as the Riemannian geometry of higher-dimensional Riemannian manifolds.

  5. Surface (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Surface_(mathematics)

    Typically, in algebraic geometry, a surface may cross itself (and may have other singularities), while, in topology and differential geometry, it may not. A surface is a topological space of dimension two; this means that a moving point on a surface may move in two directions (it has two degrees of freedom).

  6. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    The differential-geometric properties of a parametric curve (such as its length, its Frenet frame, and its generalized curvature) are invariant under reparametrization and therefore properties of the equivalence class itself. The equivalence classes are called C r-curves and are central objects studied in the differential geometry of curves.

  7. First fundamental form - Wikipedia

    en.wikipedia.org/wiki/First_fundamental_form

    In differential geometry, the first fundamental form is the inner product on the tangent space of a surface in three-dimensional Euclidean space which is induced canonically from the dot product of R 3. It permits the calculation of curvature and metric properties of a surface such as length and area in a manner consistent with the ambient space.

  8. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    Saddle surface with normal planes in directions of principal curvatures. In differential geometry, the two principal curvatures at a given point of a surface are the maximum and minimum values of the curvature as expressed by the eigenvalues of the shape operator at that point. They measure how the surface bends by different amounts in ...

  9. Second fundamental form - Wikipedia

    en.wikipedia.org/wiki/Second_fundamental_form

    In differential geometry, the second fundamental form (or shape tensor) is a quadratic form on the tangent plane of a smooth surface in the three-dimensional Euclidean space, usually denoted by (read "two").