Search results
Results from the WOW.Com Content Network
The following properties of the Hermitian adjoint of bounded operators are immediate: [2] Involutivity: A ... is the graph of a function. Since () is a ...
The Hermitian Laplacian matrix is a key tool in this context, as it is used to analyze the spectra of mixed graphs. [4] The Hermitian-adjacency matrix of a mixed graph is another important concept, as it is a Hermitian matrix that plays a role in studying the energies of mixed graphs. [5]
Then F*P(D)F is essentially self-adjoint and its unique self-adjoint extension is the operator of multiplication by the function P. More generally, consider linear differential operators acting on infinitely differentiable complex-valued functions of compact support.
In mathematical analysis, a Hermitian function is a complex function with the property that its complex conjugate is equal to the original function with the variable changed in sign: f ∗ ( x ) = f ( − x ) {\displaystyle f^{*}(x)=f(-x)}
In mathematics, especially functional analysis, a normal operator on a complex Hilbert space H is a continuous linear operator N : H → H that commutes with its Hermitian adjoint N*, that is: NN* = N*N. [1] Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood.
The conjugate transpose "adjoint" matrix should not be confused with the adjugate, (), which is also sometimes called adjoint. The conjugate transpose of a matrix A {\displaystyle \mathbf {A} } with real entries reduces to the transpose of A {\displaystyle \mathbf {A} } , as the conjugate of a real number is the number itself.
If is a normal element of a C*-algebra , then for every real-valued function, which is continuous on the spectrum of , the continuous functional calculus defines a self-adjoint element (). [ 5 ] Criteria
In linear algebra, an invertible complex square matrix U is unitary if its matrix inverse U −1 equals its conjugate transpose U *, that is, if = =, where I is the identity matrix.. In physics, especially in quantum mechanics, the conjugate transpose is referred to as the Hermitian adjoint of a matrix and is denoted by a dagger ( † ), so the equation above is written