Search results
Results from the WOW.Com Content Network
Cotyledon from a Judas-tree (Cercis siliquastrum, a dicot) seedling Comparison of a monocot and dicot sprouting. The visible part of the monocot plant (left) is actually the first true leaf produced from the meristem; the cotyledon itself remains within the seed Schematic of epigeal vs hypogeal germination Peanut seeds split in half, showing the embryos with cotyledons and primordial root Two ...
The dicotyledons, also known as dicots (or, more rarely, dicotyls), [2] are one of the two groups into which all the flowering plants (angiosperms) were formerly divided. The name refers to one of the typical characteristics of the group: namely, that the seed has two embryonic leaves or cotyledons. There are around 200,000 species within this ...
The seedlings of some flowering plants have no cotyledons at all. These are said to be acotyledons. The plumule is the part of a seed embryo that develops into the shoot bearing the first true leaves of a plant. In most seeds, for example the sunflower, the plumule is a small conical structure without any leaf structure. Growth of the plumule ...
A leaf (pl.: leaves) is a principal appendage of the stem of a vascular plant, [1] usually borne laterally above ground and specialized for photosynthesis.Leaves are collectively called foliage, as in "autumn foliage", [2] [3] while the leaves, stem, flower, and fruit collectively form the shoot system. [4]
The monocots or monocotyledons have, as the name implies, a single (mono-) cotyledon, or embryonic leaf, in their seeds.Historically, this feature was used to contrast the monocots with the dicotyledons or dicots which typically have two cotyledons; however, modern research has shown that the dicots are not a natural group, and the term can only be used to indicate all angiosperms that are not ...
Biomass partitioning is the process by which plants divide their energy among their leaves, stems, roots, and reproductive parts.These four main components of the plant have important morphological roles: leaves take in CO 2 and energy from the sun to create carbon compounds, stems grow above competitors to reach sunlight, roots absorb water and mineral nutrients from the soil while anchoring ...
All spermatophytes ("seed plants") possess flowers as defined here (in a broad sense), but the internal organization of the flower is very different in the two main groups of spermatophytes: living gymnosperms and angiosperms. Gymnosperms may possess flowers that are gathered in strobili, or the flower itself may be a strobilus of fertile leaves.
Depending on environmental conditions, plants may change their investment scheme, to make plants with relatively bigger root systems, or more leaves. This balance has been suggested to be a ‘ functional equilibrium’ , with plants that experience low water or nutrient supply investing more in roots, and plants growing under low light or CO 2 ...