enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generalized additive model for location, scale and shape

    en.wikipedia.org/wiki/Generalized_additive_model...

    The first two population distribution parameters and are usually characterized as location and scale parameters, while the remaining parameter(s), if any, are characterized as shape parameters, e.g. skewness and kurtosis parameters, although the model may be applied more generally to the parameters of any population distribution with up to four ...

  3. Empirical distribution function - Wikipedia

    en.wikipedia.org/wiki/Empirical_distribution...

    In MATLAB we can use Empirical cumulative distribution function (cdf) plot; jmp from SAS, the CDF plot creates a plot of the empirical cumulative distribution function. Minitab, create an Empirical CDF; Mathwave, we can fit probability distribution to our data; Dataplot, we can plot Empirical CDF plot; Scipy, we can use scipy.stats.ecdf

  4. Normal probability plot - Wikipedia

    en.wikipedia.org/wiki/Normal_probability_plot

    Normal probability plots are made of raw data, residuals from model fits, and estimated parameters. A normal probability plot In a normal probability plot (also called a "normal plot"), the sorted data are plotted vs. values selected to make the resulting image look close to a straight line if the data are approximately normally distributed.

  5. Skewed generalized t distribution - Wikipedia

    en.wikipedia.org/wiki/Skewed_generalized_t...

    where is the beta function, is the location parameter, > is the scale parameter, < < is the skewness parameter, and > and > are the parameters that control the kurtosis. and are not parameters, but functions of the other parameters that are used here to scale or shift the distribution appropriately to match the various parameterizations of this distribution.

  6. Generalized logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Generalized_logistic...

    In the log pdf plots shown here, the type IV tails are linear, the normal distribution tails are quadratic and the Cauchy tails are logarithmic. Exponential family properties [ edit ]

  7. Skewness - Wikipedia

    en.wikipedia.org/wiki/Skewness

    Example distribution with positive skewness. These data are from experiments on wheat grass growth. In probability theory and statistics, skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean. The skewness value can be positive, zero, negative, or undefined.

  8. Box plot - Wikipedia

    en.wikipedia.org/wiki/Box_plot

    Figure 2. Box-plot with whiskers from minimum to maximum Figure 3. Same box-plot with whiskers drawn within the 1.5 IQR value. A boxplot is a standardized way of displaying the dataset based on the five-number summary: the minimum, the maximum, the sample median, and the first and third quartiles.

  9. Erlang distribution - Wikipedia

    en.wikipedia.org/wiki/Erlang_distribution

    The probability density function of the Erlang distribution is (;,) = ()!,,The parameter k is called the shape parameter, and the parameter is called the rate parameter.. An alternative, but equivalent, parametrization uses the scale parameter , which is the reciprocal of the rate parameter (i.e., = /):