enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  3. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    In chemistry, the rate equation ... ⁠ for the reaction rate constant. The half-life of a first-order reaction is often expressed as t 1/2 = 0.693/k (as ln(2 ...

  4. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    Half-life is constant over ... We replace [A] for ⁠ 1 / 2 ⁠ [A] 0 in order to calculate the half-life of the reactant A [] / ... where the rate constant is a ...

  5. Transition state theory - Wikipedia

    en.wikipedia.org/wiki/Transition_state_theory

    Using the Eyring equation, there is a straightforward relationship between ΔG ‡, first-order rate constants, and reaction half-life at a given temperature. At 298 K, a reaction with ΔG ‡ = 23 kcal/mol has a rate constant of k ≈ 8.4 × 10 −5 s −1 and a half life of t 1/2 ≈ 2.3 hours, figures that are often rounded to k ~ 10 −4 s ...

  6. Clearance (pharmacology) - Wikipedia

    en.wikipedia.org/wiki/Clearance_(pharmacology)

    Clearance of a substance is sometimes expressed as the inverse of the time constant that describes its removal rate from the body divided by its volume of distribution (or total body water). In steady-state, it is defined as the mass generation rate of a substance (which equals the mass removal rate) divided by its concentration in the blood.

  7. Eyring equation - Wikipedia

    en.wikipedia.org/wiki/Eyring_equation

    The general form of the Eyring–Polanyi equation somewhat resembles the Arrhenius equation: = ‡ where is the rate constant, ‡ is the Gibbs energy of activation, is the transmission coefficient, is the Boltzmann constant, is the temperature, and is the Planck constant.

  8. Plateau principle - Wikipedia

    en.wikipedia.org/wiki/Plateau_Principle

    Half-life has units of time, and the elimination rate constant has units of 1/time, e.g., per hour or per day. An equation can be used to forecast the concentration of a compound at any future time when the fractional degration rate and steady state concentration are known:

  9. Effective half-life - Wikipedia

    en.wikipedia.org/wiki/Effective_half-life

    With the decay constant it is possible to calculate the effective half-life using the formula: t 1 / 2 = ln ⁡ ( 2 ) λ e {\displaystyle t_{1/2}={\frac {\ln(2)}{\lambda _{e}}}} The biological decay constant is often approximated as it is more difficult to accurately determine than the physical decay constant.