enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dispersion (optics) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(optics)

    In a dispersive prism, material dispersion (a wavelength-dependent refractive index) causes different colors to refract at different angles, splitting white light into a spectrum. A compact fluorescent lamp seen through an Amici prism. Dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency. [1]

  3. Spatial dispersion - Wikipedia

    en.wikipedia.org/wiki/Spatial_dispersion

    An example of spatial dispersion is that of visible light propagating through a crystal such as calcite, where the refractive index depends on the direction of travel (the orientation of the wavevector) with respect to the crystal structure. In such a case, although the light cannot resolve the individual atoms, they nevertheless can as an ...

  4. Optical rotatory dispersion - Wikipedia

    en.wikipedia.org/wiki/Optical_rotatory_dispersion

    Circular dichroism causes incident linearly polarized light to become elliptically polarized. The two phenomena are closely related, just as are ordinary absorption and dispersion. If the entire optical rotatory dispersion spectrum is known, the circular dichroism spectrum can be calculated, and vice versa.

  5. Optics - Wikipedia

    en.wikipedia.org/wiki/Optics

    Dispersion occurs when different frequencies of light have different phase velocities, due either to material properties (material dispersion) or to the geometry of an optical waveguide (waveguide dispersion). The most familiar form of dispersion is a decrease in index of refraction with increasing wavelength, which is seen in most transparent ...

  6. Optical properties - Wikipedia

    en.wikipedia.org/wiki/Optical_properties

    The optical properties of a material define how it interacts with light. The optical properties of matter are studied in optical physics (a subfield of optics) and applied in materials science. The optical properties of matter include: Refractive index; Dispersion; Transmittance and Transmission coefficient; Absorption; Scattering; Turbidity

  7. Dispersive prism - Wikipedia

    en.wikipedia.org/wiki/Dispersive_prism

    This is a result of the prism material's index of refraction varying with wavelength (dispersion). Generally, longer wavelengths (red) undergo a smaller deviation than shorter wavelengths (blue). The dispersion of white light into colors by a prism led Sir Isaac Newton to conclude that white light consisted of a mixture of different colors.

  8. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    The name "dispersion relation" originally comes from optics. It is possible to make the effective speed of light dependent on wavelength by making light pass through a material which has a non-constant index of refraction, or by using light in a non-uniform medium such as a waveguide. In this case, the waveform will spread over time, such that ...

  9. Light - Wikipedia

    en.wikipedia.org/wiki/Light

    Another example is incandescent light bulbs, which emit only around 10% of their energy as visible light and the remainder as infrared. A common thermal light source in history is the glowing solid particles in flames, but these also emit most of their radiation in the infrared and only a fraction in the visible spectrum.