Search results
Results from the WOW.Com Content Network
For a typical second-order reaction with rate equation = [] [], if the concentration of reactant B is constant then = [] [] = ′ [], where the pseudo–first-order rate constant ′ = []. The second-order rate equation has been reduced to a pseudo–first-order rate equation, which makes the treatment to obtain an integrated rate equation much ...
In fact, however, the observed reaction rate is second-order in NO 2 and zero-order in CO, [5] with rate equation r = k[NO 2] 2. This suggests that the rate is determined by a step in which two NO 2 molecules react, with the CO molecule entering at another, faster, step. A possible mechanism in two elementary steps that explains the rate ...
In chemistry, the effective molarity (denoted EM) [1] is defined as the ratio between the first-order rate constant of an intramolecular reaction and the second-order rate constant of the corresponding intermolecular reaction (kinetic effective molarity) [1] [2] or the ratio between the equilibrium constant of an intramolecular reaction and the equilibrium constant of the corresponding ...
Then the Thiele modulus for a first order reaction is: = From this relation it is evident that with large values of , the rate term dominates and the reaction is fast, while slow diffusion limits the overall rate. Smaller values of the Thiele modulus represent slow reactions with fast diffusion.
The steady-state rate equation is of mixed order and predicts that a unimolecular reaction can be of either first or second order, depending on which of the two terms in the denominator is larger. At sufficiently low pressures, k − 1 [ M ] ≪ k 2 {\displaystyle k_{-1}[{\ce {M}}]\ll k_{2}} so that d [ P ] / d t = k 1 [ A ] [ M ...
Consider , the exact solution to a differential equation in an appropriate normed space (, | | | |). Consider a numerical approximation u h {\displaystyle u_{h}} , where h {\displaystyle h} is a parameter characterizing the approximation, such as the step size in a finite difference scheme or the diameter of the cells in a finite element method .
In this paper he constructed the first high-order, total variation diminishing (TVD) scheme where he obtained second order spatial accuracy. The idea is to replace the piecewise constant approximation of Godunov's scheme by reconstructed states, derived from cell-averaged states obtained from the previous time-step. For each cell, slope limited ...
where the coefficients χ (n) are the n-th-order susceptibilities of the medium, and the presence of such a term is generally referred to as an n-th-order nonlinearity. In isotropic media () is zero for even n, and is a scalar for odd n. In general, χ (n) is an (n + 1)-th-rank tensor. It is natural to perform the same expansion for the non ...