Search results
Results from the WOW.Com Content Network
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
This screenshot shows the formula E = mc 2 being edited using VisualEditor.The window is opened by typing "<math>" in VisualEditor. The visual editor shows a button that allows to choose one of three offered modes to display a formula.
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
System Mechanic is an easy solution for optimal PC performance and simple computing. Once downloaded, it helps speed up slow computers by removing unnecessary software and files and fixes problems ...
A fractional program in which f is nonnegative and concave, g is positive and convex, and S is a convex set is called a concave fractional program.If g is affine, f does not have to be restricted in sign.
Graph of the fractional part of real numbers. The fractional part or decimal part [1] of a non‐negative real number is the excess beyond that number's integer part.The latter is defined as the largest integer not greater than x, called floor of x or ⌊ ⌋.
In computer storage, fragmentation is a phenomenon in which storage space, such as computer memory or a hard drive, is used inefficiently, reducing capacity or performance and often both. The exact consequences of fragmentation depend on the specific system of storage allocation in use and the particular form of fragmentation.
In computer architecture, cycles per instruction (aka clock cycles per instruction, clocks per instruction, or CPI) is one aspect of a processor's performance: the average number of clock cycles per instruction for a program or program fragment. [1] It is the multiplicative inverse of instructions per cycle.