Search results
Results from the WOW.Com Content Network
This is a list of some well-known periodic functions. The constant function f ( x ) = c , where c is independent of x , is periodic with any period, but lacks a fundamental period . A definition is given for some of the following functions, though each function may have many equivalent definitions.
There are several ways to mathematically define quasicrystalline patterns. One definition, the "cut and project" construction, is based on the work of Harald Bohr (mathematician brother of Niels Bohr). The concept of an almost periodic function (also called a quasiperiodic function) was studied by Bohr, including work of Bohl and Escanglon. [47]
Quasiperiodic behavior is almost but not quite periodic. [2] The term used to denote oscillations that appear to follow a regular pattern but which do not have a fixed period. The term thus used does not have a precise definition and should not be confused with more strictly defined mathematical concepts such as an almost periodic function or a ...
This glossary of biology terms is a list of definitions of fundamental terms and concepts used in biology, the study of life and of living organisms.It is intended as introductory material for novices; for more specific and technical definitions from sub-disciplines and related fields, see Glossary of cell biology, Glossary of genetics, Glossary of evolutionary biology, Glossary of ecology ...
A few elements have been found to have a pharmacologic function in humans (and possibly in other living things as well; the phenomenon has not been widely studied). In these, a normally nonessential element can treat a disease (often a micronutrient deficiency). An example is fluorine, which reduces the effects of iron deficiency in rats.
A periodic function, also called a periodic waveform (or simply periodic wave), is a function that repeats its values at regular intervals or periods. The repeatable part of the function or waveform is called a cycle . [ 1 ]
The secular variation of a time series is its long-term, non-periodic variation (see Decomposition of time series).Whether a variation is perceived as secular or not depends on the available timescale: a variation that is secular over a timescale of centuries may be a segment of what is, over a timescale of millions of years, a periodic variation.
Fig 1. The top graph shows a non-periodic function () in blue defined only over the red interval from 0 to P. The function can be analyzed over this interval to produce the Fourier series in the bottom graph. The Fourier series is always a periodic function, even if original function () is not.