enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Scale parameter - Wikipedia

    en.wikipedia.org/wiki/Scale_parameter

    Animation showing the effects of a scale parameter on a probability distribution supported on the positive real line. Effect of a scale parameter over a mixture of two normal probability distributions. If the probability density exists for all values of the complete parameter set, then the density (as a function of the scale parameter only ...

  3. Platt scaling - Wikipedia

    en.wikipedia.org/wiki/Platt_scaling

    In machine learning, Platt scaling or Platt calibration is a way of transforming the outputs of a classification model into a probability distribution over classes.The method was invented by John Platt in the context of support vector machines, [1] replacing an earlier method by Vapnik, but can be applied to other classification models. [2]

  4. Generalized gamma distribution - Wikipedia

    en.wikipedia.org/wiki/Generalized_gamma_distribution

    It is a generalization of the gamma distribution which has one shape parameter (and a scale parameter). Since many distributions commonly used for parametric models in survival analysis (such as the exponential distribution , the Weibull distribution and the gamma distribution ) are special cases of the generalized gamma, it is sometimes used ...

  5. Scale-free network - Wikipedia

    en.wikipedia.org/wiki/Scale-free_network

    A scale-free network is a network whose degree distribution follows a power law, at least asymptotically.That is, the fraction P(k) of nodes in the network having k connections to other nodes goes for large values of k as

  6. Tukey lambda distribution - Wikipedia

    en.wikipedia.org/wiki/Tukey_lambda_distribution

    The Tukey lambda distribution has a single shape parameter, λ, and as with other probability distributions, it can be transformed with a location parameter, μ, and a scale parameter, σ. Since the general form of probability distribution can be expressed in terms of the standard distribution, the subsequent formulas are given for the standard ...

  7. Pearson distribution - Wikipedia

    en.wikipedia.org/wiki/Pearson_distribution

    A Pearson density p is defined to be any valid solution to the differential equation (cf. Pearson 1895, p. 381) ′ () + + + + = ()with: =, = = +, =. According to Ord, [3] Pearson devised the underlying form of Equation (1) on the basis of, firstly, the formula for the derivative of the logarithm of the density function of the normal distribution (which gives a linear function) and, secondly ...

  8. Kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Kernel_density_estimation

    Kernel density estimation of 100 normally distributed random numbers using different smoothing bandwidths.. In statistics, kernel density estimation (KDE) is the application of kernel smoothing for probability density estimation, i.e., a non-parametric method to estimate the probability density function of a random variable based on kernels as weights.

  9. Raised cosine distribution - Wikipedia

    en.wikipedia.org/wiki/Raised_cosine_distribution

    In probability theory and statistics, the raised cosine distribution is a continuous probability distribution supported on the interval [, +].The probability density function (PDF) is