Search results
Results from the WOW.Com Content Network
For humans, normal hearing is between −10 dB(HL) and 15 dB(HL), [2] [3] although 0 dB from 250 Hz to 8 kHz is deemed to be 'average' normal hearing. Hearing thresholds of humans and other mammals can be found with behavioural hearing tests or physiological tests used in audiometry.
"Wow" is slow speed (a few Hz) variation, caused by longer-term drift of the drive motor speed, whereas "flutter" is faster speed (a few tens of Hz) variations, usually caused by mechanical defects such as out-of-roundness of the capstan of a tape transport mechanism. The measurement is given in % and a lower number is better.
Bats that can detect 200 kHz cannot hear very well below 10 kHz. [25] In any case, the most sensitive range of bat hearing is narrower: about 15 kHz to 90 kHz. [25] Bats navigate around objects and locate their prey using echolocation. A bat will produce a very loud, short sound and assess the echo when it bounces back.
Porpoises have the highest known upper hearing limit at around 160 kHz. [27] Several types of fish can detect ultrasound. In the order Clupeiformes, members of the subfamily Alosinae have been shown to be able to detect sounds up to 180 kHz, while the other subfamilies (e.g. herrings) can hear only up to 4 kHz. [28]
25.1 kHz Acoustic – G 10, the highest pitch sung by Georgia Brown, who has a vocal range of 8 octaves. 44.1 kHz: Common audio sampling frequency: 10 5: 100 kHz: 740 kHz: The clock speed of the world's first commercial microprocessor, the Intel 4004 (1971) 10 6: 1 megahertz (MHz) 530 kHz to 1.710 MHz: Electromagnetic – AM radio broadcasts 1 ...
The frequency of baleen whale sounds can range from 10 Hz to 31 kHz, [27] and that of elephant calls from 15 Hz to 35 Hz. Both can be extremely loud (around 117 dB), allowing communication for many kilometres, with a possible maximum range of around 10 km (6 mi) for elephants, [28] and potentially hundreds or thousands of kilometers for some ...
Conventional audiometry tests frequencies between 250 hertz (Hz) and 8 kHz, whereas high frequency audiometry tests in the region of 8 kHz-16 kHz. Some environmental factors, such as ototoxic medication and noise exposure, appear to be more detrimental to high frequency sensitivity than to that of mid or low frequencies.
The first research on the topic of how the ear hears different frequencies at different levels was conducted by Fletcher and Munson in 1933. Until recently, it was common to see the term Fletcher–Munson used to refer to equal-loudness contours generally, even though a re-determination was carried out by Robinson and Dadson in 1956, which became the basis for an ISO 226 standard.