enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Boundary layer - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer

    The layer of air over the wing's surface that is slowed down or stopped by viscosity, is the boundary layer. There are two different types of boundary layer flow: laminar and turbulent. [1] Laminar boundary layer flow. The laminar boundary is a very smooth flow, while the turbulent boundary layer contains swirls or "eddies."

  3. Thermal boundary layer thickness and shape - Wikipedia

    en.wikipedia.org/wiki/Thermal_boundary_layer...

    This turbulent boundary layer thickness formula assumes 1) the flow is turbulent right from the start of the boundary layer and 2) the turbulent boundary layer behaves in a geometrically similar manner (i.e. the velocity profiles are geometrically similar along the flow in the x-direction, differing only by stretching factors in and (,) [5 ...

  4. Boundary layer thickness - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer_thickness

    The boundary layer thickness, , is the distance normal to the wall to a point where the flow velocity has essentially reached the 'asymptotic' velocity, .Prior to the development of the Moment Method, the lack of an obvious method of defining the boundary layer thickness led much of the flow community in the later half of the 1900s to adopt the location , denoted as and given by

  5. Newton's law of cooling - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_cooling

    For laminar flows, the heat transfer coefficient is usually smaller than in turbulent flows because turbulent flows have strong mixing within the boundary layer on the heat transfer surface. [6] Note the heat transfer coefficient changes in a system when a transition from laminar to turbulent flow occurs.

  6. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    In boundary layer flow over a flat plate, experiments confirm that, after a certain length of flow, a laminar boundary layer will become unstable and turbulent. This instability occurs across different scales and with different fluids, usually when Re x ≈ 5 × 10 5 , [ 12 ] where x is the distance from the leading edge of the flat plate, and ...

  7. Flow separation - Wikipedia

    en.wikipedia.org/wiki/Flow_separation

    The flow can be externally, around a body, or internally, in an enclosed passage. Boundary layers can be either laminar or turbulent. A reasonable assessment of whether the boundary layer will be laminar or turbulent can be made by calculating the Reynolds number of the local flow conditions. Separation occurs in flow that is slowing down, with ...

  8. Boundary layer control - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer_control

    Laminar flow produces less skin friction than turbulent but a turbulent boundary layer transfers heat better. Turbulent boundary layers are more resistant to separation. The energy in a boundary layer may need to be increased to keep it attached to its surface. Fresh air can be introduced through slots or mixed in from above.

  9. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    Within heat transfer, two principal types of convection can occur: Forced convection can occur in both laminar and turbulent flow. In the situation of laminar flow in circular tubes, several dimensionless numbers are used such as Nusselt number, Reynolds number, and Prandtl number.