Search results
Results from the WOW.Com Content Network
10 −1 g dg decigram 10 1 g dag decagram 10 −2 g cg: centigram: 10 2 g hg hectogram 10 −3 g mg: milligram: 10 3 g kg: kilogram: 10 −6 g μg: microgram (mcg) 10 6 g Mg megagram 10 −9 g ng: nanogram: 10 9 g Gg gigagram 10 −12 g pg picogram 10 12 g Tg teragram 10 −15 g fg femtogram 10 15 g Pg petagram 10 −18 g ag attogram 10 18 g Eg ...
In the metric system, a microgram or microgramme is a unit of mass equal to one millionth (1 × 10 −6) of a gram. The unit symbol is μg according to the International System of Units (SI); the recommended symbol in the United States and United Kingdom when communicating medical information is mcg .
Micro (Greek letter μ, mu, non-italic) is a unit prefix in the metric system denoting a factor of 10 −6 (one millionth). [1] It comes from the Greek word μικρός (mikrós), meaning "small". [2] It is the only SI prefix which uses a character not from the Latin alphabet.
For example, 10 miles per hour can be converted to metres per second by using a sequence of conversion factors as shown below: = . Each conversion factor is chosen based on the relationship between one of the original units and one of the desired units (or some intermediary unit), before being rearranged to create a factor that cancels out the ...
A nanosecond (ns) is a unit of time in the International System of Units (SI) equal to one billionth of a second, that is, 1 / 1 000 000 000 of a second, or 10 −9 seconds. The term combines the SI prefix nano-indicating a 1 billionth submultiple of an SI unit (e.g. nanogram, nanometre, etc.) and second, the primary unit of time in the SI.
The quantity "1 ppm" can be used for a mass fraction if a water-borne pollutant is present at one-millionth of a gram per gram of sample solution. When working with aqueous solutions, it is common to assume that the density of water is 1.00 g/mL. Therefore, it is common to equate 1 kilogram of water with 1 L of water.
For example, if you plate 1x 10 7 cells and count 1000 colonies, the transformation efficiency is: (1000/1x 10 7) x 100 = 0.1% Alternatively, CFUs can be reported per microgram of DNA used for the transformation. This can be calculated by multiplying the number of colonies by the volume of the culture plated and dividing by the amount of DNA used.
microgram: 10 6 g Mg: megagram: 10 −9 g ng: nanogram: 10 9 g Gg: gigagram: 10 −12 g pg: picogram: 10 12 g Tg: teragram: 10 −15 g fg femtogram 10 15 g Pg petagram 10 −18 g ag attogram 10 18 g Eg exagram 10 −21 g zg zeptogram 10 21 g Zg zettagram 10 −24 g yg yoctogram 10 24 g Yg yottagram 10 −27 g rg rontogram 10 27 g Rg ronnagram ...