Search results
Results from the WOW.Com Content Network
To cope with volume constraints, DNA can pack itself in the appropriate solution conditions with the help of ions and other molecules. Usually, DNA condensation is defined as "the collapse of extended DNA chains into compact, orderly particles containing only one or a few molecules". [3]
DNA supercoiling is important for DNA packaging within all cells. Because the length of DNA can be thousands of times that of a cell, packaging this genetic material into the cell or nucleus (in eukaryotes) is a difficult feat. Supercoiling of DNA reduces the space and allows for DNA to be packaged.
In order to separate DNA through silica adsorption, a sample is first lysed, releasing proteins, DNA, phospholipids, etc. from the cells. The remaining tissue is discarded. The supernatant containing the DNA is then exposed to silica in a solution with high ionic strength. The highest DNA adsorption efficiencies occur in the presence of buffer ...
The buoyant density of most DNA is 1.7g/cm 3. [11] DNA does not usually exist as a single strand, but instead as a pair of strands that are held tightly together. [9] [12] These two long strands coil around each other, in the shape of a double helix.
In nature, DNA can form three structures, A-, B-, and Z-DNA. A- and B-DNA are very similar, forming right-handed helices, whereas Z-DNA is a left-handed helix with a zig-zag phosphate backbone. Z-DNA is thought to play a specific role in chromatin structure and transcription because of the properties of the junction between B- and Z-DNA.
S phase (Synthesis phase) is the phase of the cell cycle in which DNA is replicated, occurring between G 1 phase and G 2 phase. [1] Since accurate duplication of the genome is critical to successful cell division, the processes that occur during S-phase are tightly regulated and widely conserved.
The double-helix model of DNA structure was first published in the journal Nature by James Watson and Francis Crick in 1953, [6] (X,Y,Z coordinates in 1954 [7]) based on the work of Rosalind Franklin and her student Raymond Gosling, who took the crucial X-ray diffraction image of DNA labeled as "Photo 51", [8] [9] and Maurice Wilkins, Alexander Stokes, and Herbert Wilson, [10] and base-pairing ...
The movement of the DNA may be affected by the conformation of the DNA molecule, for example, supercoiled DNA usually moves faster than relaxed DNA because it is tightly coiled and hence more compact. In a normal plasmid DNA preparation, multiple forms of DNA may be present. [13]