Search results
Results from the WOW.Com Content Network
The first set of tables below do not sort correctly, except for the lower range which has no complicating factors. Note that "400+" and "400 +" do not sort correctly in their columns. These tables do not have data-sort-type=number in their column headers.
Sorting a set of unlabelled weights by weight using only a balance scale requires a comparison sort algorithm. A comparison sort is a type of sorting algorithm that only reads the list elements through a single abstract comparison operation (often a "less than or equal to" operator or a three-way comparison) that determines which of two elements should occur first in the final sorted list.
A sorting algorithm that only works if the list is already in order, otherwise, the conditions of miracle sort are applied. Divine sort A sorting algorithm that takes a list and decides that because there is such a low probability that the list randomly occurred in its current permutation (a probability of 1/n!, where n is the number of ...
An alternative method assigns a random number to each element of the set to be shuffled and then sorts the set according to the assigned numbers. The sorting method has the same asymptotic time complexity as Fisher–Yates: although general sorting is O(n log n), numbers are efficiently sorted using Radix sort in O(n) time. Like the Fisher ...
An alternative approach is to set up a recurrence relation for the T(n) factor, the time needed to sort a list of size n. In the most unbalanced case, a single quicksort call involves O(n) work plus two recursive calls on lists of size 0 and n−1, so the recurrence relation is
It functions by comparing all odd/even indexed pairs of adjacent elements in the list and, if a pair is in the wrong order (the first is larger than the second) the elements are switched. The next step repeats this for even/odd indexed pairs (of adjacent elements). Then it alternates between odd/even and even/odd steps until the list is sorted.
Given any random variables X 1, X 2, ..., X n, the order statistics X (1), X (2), ..., X (n) are also random variables, defined by sorting the values (realizations) of X 1, ..., X n in increasing order. When the random variables X 1, X 2, ..., X n form a sample they are independent and identically distributed. This is the case treated below.
Sorting may refer to: Help:Sortable tables, for editing tables which can be sorted by viewers; Help:Category § Sorting category pages, for documentation of how categories are sorted; Wikipedia:Manual of Style/Lists § Sorting a list, for guidelines on ordering of lists