Search results
Results from the WOW.Com Content Network
Wave-particle duality is the concept in quantum mechanics that quantum entities exhibit particle or wave properties according to the experimental circumstances. [1]: 59 It expresses the inability of the classical concepts such as particle or wave to fully describe the behavior of quantum objects. [2]: III:1-1 During the 19th and early 20th ...
In modern physics, the double-slit experiment demonstrates that light and matter can exhibit behavior of both classical particles and classical waves. This type of experiment was first performed by Thomas Young in 1801, as a demonstration of the wave behavior of visible light. [1] In 1927, Davisson and Germer and, independently George Paget ...
e. In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. [1][2] Classically, electromagnetic radiation consists of electromagnetic waves, which are synchronized oscillations of electric and magnetic fields.
A photon (from Ancient Greek φῶς, φωτός (phôs, phōtós) 'light') is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that always move at the speed of light ...
The de Broglie–Bohm theory[a] is an interpretation of quantum mechanics which postulates that, in addition to the wavefunction, an actual configuration of particles exists, even when unobserved. The evolution over time of the configuration of all particles is defined by a guiding equation. The evolution of the wave function over time is given ...
This behavior is known as wave–particle duality. In addition to light, electrons, atoms, and molecules are all found to exhibit the same dual behavior when fired towards a double slit. [2] A (simplified) diagram of Quantum Tunneling, a phenomenon by which a particle may move through a barrier which would be impossible under classical mechanics.
The wave–particle duality relation, also called [1] the Englert–Greenberger–Yasin duality relation, or the Englert–Greenberger relation, relates the visibility, , of interference fringes with the definiteness, or distinguishability, , of the photons' paths in quantum optics. [2][3][4] As an inequality: Although it is treated as a single ...
Einstein's 1909 arguments for the wave–particle duality of light were based on a thought experiment. Einstein imagined a mirror in a cavity containing particles of an ideal gas and filled with black-body radiation, with the entire system in thermal equilibrium. The mirror is constrained in its motions to a direction perpendicular to its surface.