Search results
Results from the WOW.Com Content Network
This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.
Ω(n), the prime omega function, is the number of prime factors of n counted with multiplicity (so it is the sum of all prime factor multiplicities). A prime number has Ω(n) = 1. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 (sequence A000040 in the OEIS). There are many special types of prime numbers. A composite number has Ω(n) > 1.
For example, 3 is a Mersenne prime as it is a prime number and is expressible as 22 − 1. [1][2] The numbers p corresponding to Mersenne primes must themselves be prime, although the vast majority of primes p do not lead to Mersenne primes—for example, 211 − 1 = 2047 = 23 × 89. [3] Meanwhile, perfect numbers are natural numbers that equal ...
Therefore, every prime number other than 2 is an odd number, and is called an odd prime. [10] Similarly, when written in the usual decimal system, all prime numbers larger than 5 end in 1, 3, 7, or 9. The numbers that end with other digits are all composite: decimal numbers that end in 0, 2, 4, 6, or 8 are even, and decimal numbers that end in ...
Formula for primes. In number theory, a formula for primes is a formula generating the prime numbers, exactly and without exception. Formulas for calculating primes do exist; however, they are computationally very slow. A number of constraints are known, showing what such a "formula" can and cannot be.
Ribenboim defines a triply palindromic prime as a prime p for which: p is a palindromic prime with q digits, where q is a palindromic prime with r digits, where r is also a palindromic prime. [5] For example, p = 10 11310 + 4661664 × 10 5652 + 1, which has q = 11311 digits, and 11311 has r = 5 digits. The first (base-10) triply palindromic ...
Mersenne primes (of form 2^ p − 1 where p is a prime) In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form Mn = 2n − 1 for some integer n. They are named after Marin Mersenne, a French Minim friar, who studied them in the early 17th century.
An emirp (prime spelled backwards) is a prime number that results in a different prime when its decimal digits are reversed. [1] This definition excludes the related palindromic primes . The term reversible prime is used to mean the same as emirp, but may also, ambiguously, include the palindromic primes.