Search results
Results from the WOW.Com Content Network
1 bit – 0 or 1, false or true, Low or High (a.k.a. unibit) 1.442695 bits (log 2 e) – approximate size of a nat (a unit of information based on natural logarithms) 1.5849625 bits (log 2 3) – approximate size of a trit (a base-3 digit) 2 1: 2 bits – a crumb (a.k.a. dibit) enough to uniquely identify one base pair of DNA
The data must be ordered from smallest to largest to compute quartiles; as such, quartiles are a form of order statistic. The three quartiles, resulting in four data divisions, are as follows: The first quartile (Q 1) is defined as the 25th percentile where lowest 25% data is below this point.
In descriptive statistics, the range of a set of data is size of the narrowest interval which contains all the data. It is calculated as the difference between the largest and smallest values (also known as the sample maximum and minimum). [1] It is expressed in the same units as the data.
The byte, 8 bits, 2 nibbles, is possibly the most commonly known and used base unit to describe data size. The word is a size that varies by and has a special importance for a particular hardware context. On modern hardware, a word is typically 2, 4 or 8 bytes, but the size varies dramatically on older hardware.
In statistics, the sample maximum and sample minimum, also called the largest observation and smallest observation, are the values of the greatest and least elements of a sample. [1] They are basic summary statistics, used in descriptive statistics such as the five-number summary and Bowley's seven-figure summary and the associated box plot.
Probability density functions of the order statistics for a sample of size n = 5 from an exponential distribution with unit scale parameter. In statistics, the kth order statistic of a statistical sample is equal to its kth-smallest value. [1]
The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies ...
In statistics, ranking is the data transformation in which numerical or ordinal values are replaced by their rank when the data are sorted. For example, the ranks of the numerical data 3.4, 5.1, 2.6, 7.3 are 2, 3, 1, 4. As another example, the ordinal data hot, cold, warm would be replaced by 3, 1, 2.