enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    A reflection about a line or plane that does not go through the origin is not a linear transformation — it is an affine transformation — as a 4×4 affine transformation matrix, it can be expressed as follows (assuming the normal is a unit vector): [′ ′ ′] = [] [] where = for some point on the plane, or equivalently, + + + =.

  3. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    The vectorization is frequently used together with the Kronecker product to express matrix multiplication as a linear transformation on matrices. In particular, vec ⁡ ( A B C ) = ( C T ⊗ A ) vec ⁡ ( B ) {\displaystyle \operatorname {vec} (ABC)=(C^{\mathrm {T} }\otimes A)\operatorname {vec} (B)} for matrices A , B , and C of dimensions k ...

  4. Choi's theorem on completely positive maps - Wikipedia

    en.wikipedia.org/wiki/Choi's_theorem_on...

    The corresponding Kraus operators can be obtained by exactly the same argument from the proof. When the Kraus operators are obtained from the eigenvector decomposition of the Choi matrix, because the eigenvectors form an orthogonal set, the corresponding Kraus operators are also orthogonal in the Hilbert–Schmidt inner product. This is not ...

  5. File:Linear transformation.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Linear_transformation.pdf

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us

  6. Proofs involving ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_ordinary...

    Recall that M = I − P where P is the projection onto linear space spanned by columns of matrix X. By properties of a projection matrix, it has p = rank(X) eigenvalues equal to 1, and all other eigenvalues are equal to 0. Trace of a matrix is equal to the sum of its characteristic values, thus tr(P) = p, and tr(M) = n − p. Therefore,

  7. Matrix equivalence - Wikipedia

    en.wikipedia.org/wiki/Matrix_equivalence

    In linear algebra, two rectangular m-by-n matrices A and B are called equivalent if = for some invertible n-by-n matrix P and some invertible m-by-m matrix Q.Equivalent matrices represent the same linear transformation V → W under two different choices of a pair of bases of V and W, with P and Q being the change of basis matrices in V and W respectively.

  8. Orthogonal transformation - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_transformation

    In finite-dimensional spaces, the matrix representation (with respect to an orthonormal basis) of an orthogonal transformation is an orthogonal matrix. Its rows are mutually orthogonal vectors with unit norm, so that the rows constitute an orthonormal basis of V. The columns of the matrix form another orthonormal basis of V.

  9. Orthogonal Procrustes problem - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_Procrustes_problem

    The orthogonal Procrustes problem [1] is a matrix approximation problem in linear algebra. In its classical form, one is given two matrices A {\displaystyle A} and B {\displaystyle B} and asked to find an orthogonal matrix Ω {\displaystyle \Omega } which most closely maps A {\displaystyle A} to B {\displaystyle B} .