Search results
Results from the WOW.Com Content Network
In qualitative research, a member check, also known as informant feedback or respondent validation, is a technique used by researchers to help improve the accuracy, credibility, validity, and transferability (also known as applicability, internal validity, [1] or fittingness) of a study. [2]
Informal methods of validation and verification are some of the more frequently used in modeling and simulation. They are called informal because they are more qualitative than quantitative. [1] While many methods of validation or verification rely on numerical results, informal methods tend to rely on the opinions of experts to draw a conclusion.
Verification is intended to check that a product, service, or system meets a set of design specifications. [6] [7] In the development phase, verification procedures involve performing special tests to model or simulate a portion, or the entirety, of a product, service, or system, then performing a review or analysis of the modeling results.
Data collection or data gathering is the process of gathering and measuring information on targeted variables in an established system, which then enables one to answer relevant questions and evaluate outcomes. Data collection is a research component in all study fields, including physical and social sciences, humanities, [2] and business ...
Use of the phrase "working hypothesis" goes back to at least the 1850s. [7]Charles Sanders Peirce came to hold that an explanatory hypothesis is not only justifiable as a tentative conclusion by its plausibility (by which he meant its naturalness and economy of explanation), [8] but also justifiable as a starting point by the broader promise that the hypothesis holds for research.
The English word hypothesis comes from the ancient Greek word ὑπόθεσις (hypothesis), whose literal or etymological sense is "putting or placing under" and hence in extended use has many other meanings including "supposition". [1] [3] [4] [5]
Data validation is intended to provide certain well-defined guarantees for fitness and consistency of data in an application or automated system. Data validation rules can be defined and designed using various methodologies, and be deployed in various contexts. [1]
Data reconciliation is a technique that targets at correcting measurement errors that are due to measurement noise, i.e. random errors.From a statistical point of view the main assumption is that no systematic errors exist in the set of measurements, since they may bias the reconciliation results and reduce the robustness of the reconciliation.