Search results
Results from the WOW.Com Content Network
In chemical thermodynamics, an endergonic reaction (from Greek ἔνδον (endon) 'within' and ἔργον (ergon) 'work'; also called a heat absorbing nonspontaneous reaction or an unfavorable reaction) is a chemical reaction in which the standard change in free energy is positive, and an additional driving force is needed to perform this ...
Using the Eyring equation, there is a straightforward relationship between ΔG ‡, first-order rate constants, and reaction half-life at a given temperature. At 298 K, a reaction with ΔG ‡ = 23 kcal/mol has a rate constant of k ≈ 8.4 × 10 −5 s −1 and a half life of t 1/2 ≈ 2.3 hours, figures that are often rounded to k ~ 10 −4 s ...
In theoretical chemistry, an energy profile is a theoretical representation of a chemical reaction or process as a single energetic pathway as the reactants are transformed into products. This pathway runs along the reaction coordinate , which is a parametric curve that follows the pathway of the reaction and indicates its progress; thus ...
The change of Gibbs free energy (ΔG) in an exergonic reaction (that takes place at constant pressure and temperature) is negative because energy is lost (2). In chemical thermodynamics, an exergonic reaction is a chemical reaction where the change in the free energy is negative (there is a net release of free energy). [1]
The main factor affecting the formal (or apparent) reduction potentials ′ in biochemical or biological processes is the pH. To determine approximate values of formal reduction potentials, neglecting in a first approach changes in activity coefficients due to ionic strength, the Nernst equation has to be applied taking care to first express ...
The general form of the Eyring–Polanyi equation somewhat resembles the Arrhenius equation: = ‡ where is the rate constant, ‡ is the Gibbs energy of activation, is the transmission coefficient, is the Boltzmann constant, is the temperature, and is the Planck constant.
The electron affinity of molecules is a complicated function of their electronic structure. For instance the electron affinity for benzene is negative, as is that of naphthalene, while those of anthracene, phenanthrene and pyrene are positive. In silico experiments show that the electron affinity of hexacyanobenzene surpasses that of fullerene. [5]
The definition of the Gibbs function is = + where H is the enthalpy defined by: = +. Taking differentials of each definition to find dH and dG, then using the fundamental thermodynamic relation (always true for reversible or irreversible processes): = where S is the entropy, V is volume, (minus sign due to reversibility, in which dU = 0: work other than pressure-volume may be done and is equal ...