Search results
Results from the WOW.Com Content Network
In chemical thermodynamics, an endergonic reaction (from Greek ἔνδον (endon) 'within' and ἔργον (ergon) 'work'; also called a heat absorbing nonspontaneous reaction or an unfavorable reaction) is a chemical reaction in which the standard change in free energy is positive, and an additional driving force is needed to perform this ...
Using the Eyring equation, there is a straightforward relationship between ΔG ‡, first-order rate constants, and reaction half-life at a given temperature. At 298 K, a reaction with ΔG ‡ = 23 kcal/mol has a rate constant of k ≈ 8.4 × 10 −5 s −1 and a half life of t 1/2 ≈ 2.3 hours, figures that are often rounded to k ~ 10 −4 s ...
The change of Gibbs free energy (ΔG) in an exergonic reaction (that takes place at constant pressure and temperature) is negative because energy is lost (2). In chemical thermodynamics, an exergonic reaction is a chemical reaction where the change in the free energy is negative (there is a net release of free energy). [1]
Hammond's postulate (or alternatively the Hammond–Leffler postulate), is a hypothesis in physical organic chemistry which describes the geometric structure of the transition state in an organic chemical reaction. [1] First proposed by George Hammond in 1955, the postulate states that: [2]
In theoretical chemistry, an energy profile is a theoretical representation of a chemical reaction or process as a single energetic pathway as the reactants are transformed into products. This pathway runs along the reaction coordinate , which is a parametric curve that follows the pathway of the reaction and indicates its progress; thus ...
Thus, is positive if the unfolded state is less stable (i.e., disfavored) relative to the native state. The most direct way to measure the conformational stability Δ G o {\displaystyle \Delta G^{o}} of a molecule with two-state folding is to measure its kinetic rate constants k f {\displaystyle k_{f}} and k u {\displaystyle k_{u}} under the ...
where A is the pre-exponential factor for the reaction, R is the universal gas constant, T is the absolute temperature (usually in kelvins), and k is the reaction rate coefficient. Even without knowing A , E a can be evaluated from the variation in reaction rate coefficients as a function of temperature (within the validity of the Arrhenius ...
The electron affinity of molecules is a complicated function of their electronic structure. For instance the electron affinity for benzene is negative, as is that of naphthalene, while those of anthracene, phenanthrene and pyrene are positive. In silico experiments show that the electron affinity of hexacyanobenzene surpasses that of fullerene. [5]