Search results
Results from the WOW.Com Content Network
For a line integral over a scalar field, the integral can be constructed from a Riemann sum using the above definitions of f, C and a parametrization r of C. This can be done by partitioning the interval [a, b] into n sub-intervals [t i−1, t i] of length Δt = (b − a)/n, then r(t i) denotes some point, call it a sample point, on the curve C.
The integral over the whole of the contour is the sum of the integral over each of these contours. ... extending to a line segment parallel and close to the positive ...
The gradient theorem states that if the vector field F is the gradient of some scalar-valued function (i.e., if F is conservative), then F is a path-independent vector field (i.e., the integral of F over some piecewise-differentiable curve is dependent only on end points). This theorem has a powerful converse:
In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula.
The classical Stokes' theorem relates the surface integral of the curl of a vector field over a surface in Euclidean three-space to the line integral of the vector field over its boundary. It is a special case of the general Stokes theorem (with n = 2 {\displaystyle n=2} ) once we identify a vector field with a 1-form using the metric on ...
Such integrals are known as line integrals and surface integrals respectively. These have important applications in physics, as when dealing with vector fields. A line integral (sometimes called a path integral) is an integral where the function to be integrated is evaluated along a curve. [42] Various different line integrals are in use.
The defining integral of arc length does not always have a closed-form expression, and numerical integration may be used instead to obtain numerical values of arc length. Determining the length of an irregular arc segment by approximating the arc segment as connected (straight) line segments is also called curve rectification.
Oriented Line Integral Convolution (OLIC) solves this issue by using a ramp-like asymmetric kernel and a low-density noise texture. [8] The kernel asymmetrically modulates the intensity along the streamline, producing a trace that encodes orientation; the low-density of the noise texture prevents smeared traces from overlapping, aiding readability.