Ads
related to: complement of set definition math example problems worksheet 1kutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
If A is the set of odd numbers, then the complement of A is the set of even numbers. If B is the set of multiples of 3, then the complement of B is the set of numbers congruent to 1 or 2 modulo 3 (or, in simpler terms, the integers that are not multiples of 3). Assume that the universe is the standard 52-card deck.
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
The simple theorems in the algebra of sets are some of the elementary properties of the algebra of union (infix operator: ∪), intersection (infix operator: ∩), and set complement (postfix ') of sets. These properties assume the existence of at least two sets: a given universal set, denoted U, and the empty set, denoted {}.
The cofinite topology or the finite complement topology is a topology that can be defined on every set . It has precisely the empty set and all cofinite subsets of X {\displaystyle X} as open sets. As a consequence, in the cofinite topology, the only closed subsets are finite sets, or the whole of X . {\displaystyle X.}
In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. [1] [2] In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation.
In mathematics, a cocountable subset of a set X is a subset Y whose complement in X is a countable set.In other words, Y contains all but countably many elements of X.Since the rational numbers are a countable subset of the reals, for example, the irrational numbers are a cocountable subset of the reals.
For example, {1, 2} is a subset of {1, 2, 3}, and so is {2} but {1, 4} is not. As implied by this definition, a set is a subset of itself. For cases where this possibility is unsuitable or would make sense to be rejected, the term proper subset is defined. A is called a proper subset of B if and only if A is a subset of B, but A is not equal to B.
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
Ads
related to: complement of set definition math example problems worksheet 1kutasoftware.com has been visited by 10K+ users in the past month