Search results
Results from the WOW.Com Content Network
The molecular formula C 6 H 8 O 6 (molar mass: 176.124 g/mol) may be: Ascorbic acid (vitamin C) Erythorbic acid; Glucuronolactone; Propane-1,2,3-tricarboxylic acid;
[2] [3] In reference to the compound's antiscorbutic properties, Haworth and Szent-Györgyi proposed to rename it "a-scorbic acid" for the compound, and later specifically l-ascorbic acid. [4] Because of their work, in 1937 two Nobel Prizes : in Chemistry and in Physiology or Medicine were awarded to Haworth and Szent-Györgyi, respectively.
Molecular weight (M.W.) (for molecular compounds) and formula weight (F.W.) (for non-molecular compounds), are older terms for what is now more correctly called the relative molar mass (M r). [8] This is a dimensionless quantity (i.e., a pure number, without units) equal to the molar mass divided by the molar mass constant. [notes 1]
In high-resolution mass spectrometry the mass isotopomers 12 C 1 H 4 and 13 C 1 H 4 are observed as distinct molecules, with molecular masses of approximately 16.031 Da and 17.035 Da, respectively. The intensity of the mass-spectrometry peaks is proportional to the isotopic abundances in the molecular species.
The molecular formula C 6 H 8 O (molar mass: 96.13 g/mol, exact mass: 96.05751 u) may refer to: Cyclohexenone; 2,5-Dimethylfuran; 2,3-Dimethylfuran; 2,4-Dimethylfuran;
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
In water solutions containing relatively small quantities of dissolved solute (as in biology), such figures may be "percentivized" by multiplying by 100 a ratio of grams solute per mL solution. The result is given as "mass/volume percentage". Such a convention expresses mass concentration of 1 gram of solute in 100 mL of solution, as "1 m/v %".
where the pressure, p, is the atmospheric pressure, V is the measured volume of the vessel, T is the absolute temperature of the hot bath, and R is the gas constant. The molecular weight of the chemical is then simply the mass in grams of the vapor within the vessel divided by the calculated number of mole.